• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of Cell-responsive, Biodegradable Polyureas for Ligament Tissue Engineering

Benhardt, Hugh Adam 2010 May 1900 (has links)
An estimated 200,000 injuries to the anterior cruciate ligament (ACL) occur annually in the United States, with approximately 100,000 total ACL reconstructions performed each year. Due to inherent limitations with existing ACL reconstruction strategies, the development of tissue engineered ligaments is a key area of musculoskeletal research. Although great strides have been made in the scaffold design, current strategies are limited by the inability to replicate the mechanical behavior of native ligament tissue with synthetic polyesters or natural polymers. Poly(ester urethane)s have recently been investigated as possible scaffold materials because of their established biocompatibility, excellent mechanical properties, and exceptionally tunable structure. However, non-specific degradation makes it difficult to tailor polyurethane structure to complement ligament regeneration. In contrast, a biomaterial that features system-responsive degradation would integrate with native ligament remodeling and thus provide effective load transfer to newly formed tissue that is necessary to restore mechanical integrity. In this study, enzyme-labile peptide sequences were conjugated to ether-based polyols to form collagen-mimetic soft segments that feature cell-responsive degradation. Synthetic routes were first developed to functionalize these polyols with favorable end groups for peptide coupling. Upon successful conjugation, biodegradable soft segments were then incorporated into the structure of linear polyurea elastomers. By varying soft segment chemistry, soft segment molecular weight, and the hard to soft segment ratio, a library of cell-responsive, biodegradable polyureas was developed. This library can then be used to elucidate key structure-property relationships necessary to complement neotissue formation. Overall, synthesis of a novel biomaterial that combines the strength and tunability of synthetic elastomers with cell-responsive degradation will assist in the development of an improved tissue engineered graft for ACL reconstruction.
2

Development of a Biomimetic Scaffold for Ligament Tissue Engineering

Hayami, James W.S. 22 June 2011 (has links)
The focus of this thesis was to design a scaffold for in vitro culture that would mimic the structure of the native ligament in order to influence primary ligament cells towards the production of ligament-specific tissue. A major part of this project was material selection and subsequent testing to determine if the chosen materials were suitable for the scaffold design. A 20:80 (CL:DLLA) poly(ε-caprolactone-co-D,L-lactide) copolymer (PCLDLLA) was synthesized and electrospun with sub-cellular fibre diameters. The fibres were manufactured into aligned arrays to mimic the collagen fibrils of the ligament. To enhance cell and protein adhesion properties, the PCLDLLA polymer surface was modified using a base catalyzed etching technique. A photocrosslinked methacrylated glycol chitosan (M-GC) hydrogel was used to deliver encapsulated ligament cells to the biomimetic scaffold and mimic the hydrated proteoglycan matrix portion of the ligament. The scaffolds were cultured in vitro for a 4 week period and characterized using immunohistochemistry to identify and localize ligament specific proteins produced within the scaffolds. Cell culture results indicated that the M-GC hydrogel was an effective method of delivering viable cells evenly throughout the biomimetic scaffold. Compared to the unmodified PCLDLLA surfaces, the base-etched electrospun PCLDLLA fibre surfaces increased cell adhesion and acted as new tissue growth guides in the biomimetic scaffold. The biomimetic scaffolds produced and accumulated ligament specific proteins: collagens type I and III. The biomimetic scaffold design was determined to be a viable alternative to the current designs of ligament tissue engineering scaffolds. / Thesis (Master, Chemical Engineering) -- Queen's University, 2011-06-22 10:46:12.291
3

BIOMIMETIC SCAFFOLDS FOR LIGAMENT TISSUE ENGINEERING

Surrao, Denver 11 January 2012 (has links)
The primary objective of my thesis was to investigate the effect of crimp-like fibrous scaffolds on bovine fibroblasts and to develop a scaffold for anterior cruciate ligament (ACL) tissue engineering. To achieve this objective, fibrous biodegradable polymeric scaffolds were fabricated, which upon relaxation developed a crimp-like structure, which resembled the crimp seen in native collagen. The understanding of the crimp mechanism allowed for controlling crimp-like patterns in various polymer fibre systems, and was determined to be due to residual stress coupled with an operating temperature (Top) above the glass transition temperature of the polymer (Tg). The benefit of crimp was evaluated by seeding fibroblasts on crimp-like fibres that were subjected to dynamic mechanical loading. The results showed a significant increase in extracellular matrix (ECM) accumulation by fibroblasts that experienced crimp unfolding. In addition, fibroblasts seeded on mechanically stimulated crimp-like fibrous scaffolds formed ECM bundles that resembled collagen fibre fascicles. Two separate studies were conducted to fabricate fibrous scaffolds with high modulus: one on thermoplastic polyesters and the other on a photocrosslinkable polyester. Of the thermoplastic polyesters investigated, poly(L-lactide-co-D,L-lactide) P(LLA-DLLA) exhibited the highest modulus, and was the most resistant to hydrolytic degradation. These fibres were placed in a heated aqueous environment to exhibit a crimp-like pattern similar to that of native collagen. Bovine fibroblasts were shown to attach, proliferate and deposit ECM on the surface of the P(LLA-DLLA) fibrous scaffolds. In addition, the deposited ECM appeared to be organized in distinctive bundles that resembled fascicles found in native ACL. However, upon crimp unfolding the crimp was not completely recovered. Photocrosslinkable poly(L-lactide-co-trimethylene carbonate cinnamate) P(LLA-TMC cinnamate) fibres in addition to supporting cell proliferation and ECM accumulation, completely recovered their crimp-like pattern, via [2 + 2] cycloaddition of the cinnamate groups. The recovery of crimp upon unfolding is a novel design feature incorporated into electrospun fibres as it innately mimics the function of collagen fibres found in the ACL. From the results obtained it is evident that crimp and its unfolding are key design features/conditioning techniques that need to be incorporated into fibrous scaffolds that possess high modulus, intended for ligament tissue engineering. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2012-01-05 14:11:25.965
4

A contribution to the selection of suitable cells, scaffold and biomechanical environment for ligament tissue engineering / Une contribution à la sélection de cellules adaptés, biomatériaux et d’environments biomécaniques appropriés pour l’ingéniere tissulaire ligamentaire

Liu, Xing 01 July 2019 (has links)
L'ingénierie tissulaire du ligament constitue une approche prometteuse pour réparer ou remplacer un ligament endommagé. Les trois piliers essentiels de l'ingénierie tissulaire ligamentaire sont la matrice de support (aussi appelée scaffold), la source cellulaire, ainsi que l'apport de stimulations biomécaniques/biochimiques : ces trois piliers ont été partiellement étudiés par le passé dans le but de s’orienter vers une régénération ligamentaire. Dans la présente étude, le polymère synthétique poly (L-lactide-co-ε-caprolactone) (PLCL) et la soie ont été proposés et comparés comme de potentiels candidats pour la constitution d’une matrice de support. Une série de matrices tressées multicouches à base de PLCL et de soie, ainsi qu'un nouveau composite soie/PLCL ont été développés et comparés. Les caractérisations physico-chimiques et biologiques ont démontré que le PLCL et la soie constituent des candidats pertinents, tant sur les plans mécaniques que biologiques, pour la constitution d’une matrice de support. De plus, nous avons montré que le composite soie/PLCL offrait des propriétés mécaniques et une biocompatibilité accrue par rapport aux autres matrice testées, et constituait probablement le candidat le plus approprié pour l'ingénierie tissulaire du ligament. Les cellules souches mésenchymateuses (CSM) de la gelée de Wharton (WJ-MSCs) ainsi que les cellules souches mésenchymateuses de la moelle osseuse (BM-MSCs) ont été évaluées et comparées en tant que sources cellulaires potentielles pour la régénération ligamentaire. Les caractéristiques biologiques de ces cellules incluent l’adhésion cellulaire, la prolifération, la migration et la synthèse de matrice extracellulaire. Ces deux types de cellules ont montré une bonne biocompatibilité dans leurs interactions avec les matrices de support en PLCL et en soie. Aucune différence significative n'a été observée entre les WJ-MSCs et les BM-MSCs. Enfin, l'effet de la stimulation biomécanique sur la différentiation des CSM en tissu ligamentaire a été évalué par le biais d’un bioréacteur de traction-torsion. Bien que peu de cellules aient été détectées la matrice après 7 jours de stimulation, des CSM de forme allongée le long des fibres ont été détectées, ce qui permet de penser qu'il est possible de promouvoir la différenciation des biosubstituts matrice-cellules grâce à la stimulation mécanique en bioréacteur. En conclusion, cette étude démontre le potentiel prometteur de l’association de cellules souches mésenchymateuses issues de la gelée de Wharton ou de la moelle osseuse avec une matrice de support composite soie/PLCL pour la régénération ligamentaire dans le futur. / Ligament tissue engineering offers a potential approach to recover or replace injured ligament. The three essential elements that have been investigated towards ligament regeneration consist in a suitable scaffold, an adapted cell source, and the supply of biomechanical/biochemical stimulations. In the current study, synthetic polymer poly (L-lactide-co-ε-caprolactone) (PLCL) and silk have been evaluated as suitable candidates to constitute an adapted scaffold. A series of multilayer braided scaffolds based on PLCL and silk, as well as an original silk/PLCL composite scaffold, have been developed and compared. The conducted physicochemical and biological characterizations have demonstrated that both PLCL and silk constitute adapted candidate material to form ligament scaffolds from the mechanical and biological points of view. Moreover, it has been observed that silk/PLCL composite scaffold resulted in adequate mechanical properties and biocompatibility, and therefore could constitute suitable candidate scaffolds for ligament tissue engineering. Both Wharton’s Jelly mesenchymal stem cells (WJ-MSCs) and Bone marrow mesenchymal stem cells (BM-MSCs) have been evaluated to be cell source for ligament regeneration. MSCs behaviors including cell attachment, proliferation, migration and extracellular matrix synthesis have been investigated. In the present study, both MSCS showed a good biocompatibility to interact with PLCL and silk scaffolds. No significant differences have been detected between WJ-MSCs and BM-MSCs. Finally, the effect of biomechanical stimulation on MSCs differentiation towards ligament tissue has been carried out with a tension-torsion bioreactor. Although few cells were detected on scaffold after 7 days of stimulation, MSCs were observed to exhibit an elongated shape along the longitudinal direction of fibers, which may indicate that an adapted mechanical stimulation could promote MSC-scaffold constructs differentiation towards ligamentous tissue. As a conclusion, this study demonstrates the potential of WJ-MSCs and BM-MSCs combined with a new silk/PLCL composite scaffold towards ligament regeneration.

Page generated in 0.1318 seconds