• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some aspects of the synthesis, reactivity and structure of #pi#-coordinated ligands on molybdenum and tungsten

Rodrigues, R. A. January 1987 (has links)
No description available.
2

Palladium-catalysed allylic amination in the formation of α-amino acids

Jumnah, Roshan January 1995 (has links)
The review of this thesis describes palladium catalysed allylic amination in the context of the mechanism and synthetic utility. Examples of alkene geometry, regioselectivity and net retention have been illustrated as a consequence of the amination mechanism. The synthetic aspects of palladium catalysed allylic amination consists of other examples of the formation of enantiomerically enriched allylic amines and amino acids.
3

The Synthesis of Molecular Switches Based Upon Ru(II) Polypyridyl Architecture for Electronic Applications

Steen, Robert January 2007 (has links)
<p>According to the famous axiom known as Moore’s Law the number of transistors that can be etched on a given piece of silicon, and therefore the computing power, will double every 18 to 24 months. For the last 40 years Moore’s prediction has held true as computers have grown more and more powerful. However, around 2020 hardware manufac-turers will have reached the physical limits of silicon. A proposed solution to this dilemma is molecular electronics. Within this field researchers are attempting to develop individual organic molecules and metal complexes that can act as molecular equivalents of electronic components such as diodes, transistors and capacitors. By utilizing molecular electronics to construct the next generation of computers processors with 100,000 times as many components on the same surface area could potentially be created.</p><p>We have synthesized a range of new pyridyl thienopyridine ligands and compared the electrochemical and photophysical properties of their corresponding Ru(II) complexes with that with the Ru(II) complexes of a variety of ligands based on 6-thiophen-2-yl-2,2´-bipyridine and 4-thiophen-2-yl-2,2´-bipyridine. While the electrochemistry of the Ru(II) complexes were similar to that of unsubstituted [Ru(bpy)3]2+, substantial differences in luminescence lifetimes were found. Our findings show that, due to steric interactions with the auxiliary bipy-ridyl ligands, luminescence is quenched in Ru(II) complexes that in-corporate the 6-thiophen-2-yl-2,2´-bipyridine motif, while it is on par with the luminescence of [Ru(bpy)3]2+ in the Ru(II) complexes of the pyridyl thienopyridine ligands. The luminescence of the Ru(II) com-plexes based on the 4-thiophen-2-yl-2,2´-bipyridine motif was en-hanced compared to [Ru(bpy)3]2+ which indicates that complexes of this category are the most favourable for energy/electron-transfer sys-tems.</p><p>At the core of molecular electronics are the search for molecular ON/OFF switches. We have synthesized a reversible double cyclome-tallated switch based on the Ru(tpy) complex of 3,8-bis-(6-thiophen-2-yl-pyridin-2-yl)-[4,7]phenanthroline. Upon treatment with acid/base the complex can be switched between the cyclometallated and the S-bonded form. This prototype has potentially three different states which opens the path to systems based on ternary computer logic.</p>
4

Ruthenium-Manganese Complexes as Model Systems for Artificial Photosynthesis

Tran, Anh January 2001 (has links)
No description available.
5

Ruthenium-Manganese Complexes as Model Systems for Artificial Photosynthesis

Tran, Anh January 2001 (has links)
No description available.
6

The Synthesis of Molecular Switches Based Upon Ru(II) Polypyridyl Architecture for Electronic Applications

Steen, Robert January 2007 (has links)
According to the famous axiom known as Moore’s Law the number of transistors that can be etched on a given piece of silicon, and therefore the computing power, will double every 18 to 24 months. For the last 40 years Moore’s prediction has held true as computers have grown more and more powerful. However, around 2020 hardware manufac-turers will have reached the physical limits of silicon. A proposed solution to this dilemma is molecular electronics. Within this field researchers are attempting to develop individual organic molecules and metal complexes that can act as molecular equivalents of electronic components such as diodes, transistors and capacitors. By utilizing molecular electronics to construct the next generation of computers processors with 100,000 times as many components on the same surface area could potentially be created. We have synthesized a range of new pyridyl thienopyridine ligands and compared the electrochemical and photophysical properties of their corresponding Ru(II) complexes with that with the Ru(II) complexes of a variety of ligands based on 6-thiophen-2-yl-2,2´-bipyridine and 4-thiophen-2-yl-2,2´-bipyridine. While the electrochemistry of the Ru(II) complexes were similar to that of unsubstituted [Ru(bpy)3]2+, substantial differences in luminescence lifetimes were found. Our findings show that, due to steric interactions with the auxiliary bipy-ridyl ligands, luminescence is quenched in Ru(II) complexes that in-corporate the 6-thiophen-2-yl-2,2´-bipyridine motif, while it is on par with the luminescence of [Ru(bpy)3]2+ in the Ru(II) complexes of the pyridyl thienopyridine ligands. The luminescence of the Ru(II) com-plexes based on the 4-thiophen-2-yl-2,2´-bipyridine motif was en-hanced compared to [Ru(bpy)3]2+ which indicates that complexes of this category are the most favourable for energy/electron-transfer sys-tems. At the core of molecular electronics are the search for molecular ON/OFF switches. We have synthesized a reversible double cyclome-tallated switch based on the Ru(tpy) complex of 3,8-bis-(6-thiophen-2-yl-pyridin-2-yl)-[4,7]phenanthroline. Upon treatment with acid/base the complex can be switched between the cyclometallated and the S-bonded form. This prototype has potentially three different states which opens the path to systems based on ternary computer logic.
7

Synthesis, coordination chemistry, and reactivity of functionalized phosphines: Toward water-soluble macrocyclic phosphine complexes

Swor, Charles D. (Charles David), 1982- 03 1900 (has links)
xx, 290 p. : ill. (some col.) / Macrocyclic phosphine compounds have long been sought as ligands for transition metal complexes because of their strong binding properties. Despite considerable effort in this field, no general methods for synthesizing phosphine macrocycles or their complexes have been developed. This dissertation describes attempts to synthesize an iron complex with a water-soluble macrocyclic tetraphosphine ligand for use in separating nitrogen from natural gas. Chapter I reviews previous syntheses of macrocyclic phosphine ligands and their complexes, focusing on ligand synthesis, coordination chemistry, and demetallation of the complexes. Chapter II reports on the synthesis of water-soluble secondary bidentate phosphine ligands, their coordination chemistry with iron(II), and attempts to use these complexes as templates for forming a macrocyclic iron-phosphine complex by reactions with carbon electrophiles. Over the course of treating these iron complexes with various carbon electrophiles, an interesting reaction between bromomaleic anhydride and proton sponge was discovered. Chapter III explores the product, 4-maleicanhydrido-1,8-bis-(dimethylamino)naphthalene (MAPS). Due to its conjugated donor-acceptor network, which is disrupted upon protonation, MAPS acts as a colorimetric version of a proton sponge. The attachment of MAPS to amine-functionalized solid supports, forming solid-supported proton sponge reagents, is also described. Chapter IV discusses the synthesis of an iron(II) complex of the water-soluble phosphine 1,2-bis(di(hydroxymethyl)phosphino)ethane (DHMPE). Although unbound hydroxymethylphosphines commonly react with NH-functional amines via the phosphorus Mannich reaction, this and other complexes of DHMPE do not undergo this reaction. Further investigation with hydroxymethylphosphine-boranes suggests that the currently-accepted mechanism of the phosphorus Mannich reaction is incorrect, and an alternate mechanism is proposed. Chapter V discusses the synthesis and functionalization of copper(I) complexes of water-soluble phosphines. Unlike the complexes described in Chapter I, these complexes readily react with α,ω-dihalides or di(acyl chloride)s, forming complexes whose mass spectra correspond to those with macrocyclic phosphine ligands. Unlike most macrocyclic tetraphosphine complexes, these complexes can be demetallated by treatment with sulfide. Finally, a new synthesis of water-soluble macrocycles, based on lessons learned during the course of these investigations, is proposed. This dissertation includes previously published and unpublished co-authored material. / Committee in charge: Dr. Michael M. Haley, Chairperson; Dr. David R. Tyler, Advisor; Dr. Darren W. Johnson, Member; Dr. Shih-Yuan Liu, Member; Dr. Mark H. Reed, Outside Member
8

Different coordination modes of bis(imine-ridine) and bis(quinaldine) ligands

Prema, Dipesh January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christopher J. Levy / 2-Formylbenzoquinoline and a selection of novel chiral bis(pyridine-imine) and bis-amide ligands derived from (1R,2R)-cyclohexanediamine and (R)-[1,1’-binaphthalene]-2,2’-diamine have been synthesized and thoroughly characterized. Subsequently, their coordination chemistry has been investigated. Metallation with Zn(II), Ni(II) and Fe(II) has resulted in the formation of a series of helical complexes, some of which exhibit unusual coordination modes. Bis(imine-pyridine) ligands were found to form dinuclear complexes upon reaction with ZnCl2. In one case, the use of Zn(CF3SO3)2 resulted in the formation a single stranded monohelix, after the ligand had undergone a reduction at one imine bond. The use of NiI2 as the metal salt resulted in the formation of penta-coordinate complexes with N3-coordination and helical dinuclear complexes with bridging iodo ligands. Ni(CF3SO3)2 was also used, this resulted in the formation of a double stranded mononuclear complex. The ligand, in this case was hydrolyzed to yield a tridentate ligand, subsequently two of these new ligands coordinate to one metal center to form the complex. Bis-amide ligands were reacted with FeCl2 and Fe(CF3SO3)2 to form complexes with various different colors. In all but one case, several attempts to structurally characterize the Fe(II) complexes were unsuccessful. Suitable crystals of this complex revealed a double stranded helicate complex that coordinates through carbonyl oxygens rather than amide nitrogens. The work described herein, is an account of the synthesis, characterization and study of a new family of tetradentate nitrogen donor ligands and their respective transition metal complexes.
9

Ligand Design and Exploration of Electronic Properties Based on Dinuclear Platinum Complexes / 白金二核錯体を基盤とした配位子設計と電子物性の探索

Moriyama, Hayato 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24446号 / 理博第4945号 / 新制||理||1706(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 有賀 哲也, 教授 吉村 一良 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
10

Roztoková dynamika komplexů LnIII s monofosforovými deriváty H4dota sledovaná metódou NMR / NMR study of solution dynamics of LnIII complexes of monophosphorus H4dota analogues

Svítok, Adam January 2021 (has links)
Lanthanides have several specific properties which cannot be found for other elements in the periodic table. Among various applications of lanthanides, complexes of LnIII ions are used in medicine, e.g., as contrast agents in MRI, as luminescent probes or as radiopharmaceuticals, where their specific properties are important. These complexes must be kinetically inert to prevent release of highly toxic "free" LnIII ions. This requirement is fulfilled with pre-organized ligands such as analogues of H4dota (1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraacetic acid). Many of important properties of LnIII complexes of H4dota, such as relaxivity, isomerism and fluxionality, depend on the solution dynamics of the complexes. However, the knowledge of this solution dynamics is limited for LnIII complexes of H4dota derivatives with phosphonate or phosphinate pendant arms. Recently, a new dynamical process where phosphonate oxygen atoms interchange through a bidentate phosphonate intermediate ("a phosphonate rotation") has been proposed by DFT calculations but unconfirmed experimentally. To prove the process experimentally, solution dynamics of LnIII complexes of monophosphonate and monophosphinate derivatives of H4dota was investigated. Especially, to examine the "P-rotation", 17 O NMR spectroscopy was used...

Page generated in 0.0685 seconds