• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and evaluation of PGM-selective ligands

Gxoyiya, Babalwa Siliziwe Blossom 28 May 2013 (has links)
A series of polydentate POM-selective, sulfur-containing amide ligands have been synthesized from ro-dibromoalkanes and mercaptoacetanilide, The resulting 3,6- dithiaoctanediamides and 3,7-dithianonanediamides, some of which contain a polymerisable group, were all characterized by high-resolution MS, IR, I Hand I3C NMR spectroscopic methods. Various approaches to the polymerisable ligands were explored, the most efficient proving to be the incorporation of an allyl ether moiety in the mercaptoacetanilide. The corresponding Pd(U) and Pt(II) complexes were also prepared from the metal chloride salts and characterized by elemental analysis and spectroscopic methods. The NMR data indicates that both the cis- and transcomplexes were formed, while the IR data indicates cis- coordination of the chlorine . ligands. Molecularly imprinted polymers (MIP's), prepared using platinum(II) mercaptoacetanilide and 3,6-dithiadiamide complexes, showed high selectivity for , , palladium(II) [in the presence of Pt(II), CoCII), Cu(II) and Ni(II)] as determined by . ICP-MS analysis. The more kinetically inert Pt(II) ions however, slowly displaced Pd(II), confirming the Pt(II) selectivity of the MIP's. Solvent extraction studies were conducted to explore the selectivity of the 3,6- dithiaoctanediamides and 3,7-dithianonanediamides for Pd(U) over CoCII), Cu(U) and Ni(II). The ICP-MS data indicate that, in general, equilibration was achieved within ten minutes and that the longer-chain amides were less selective than the shorter-chain analogues. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
2

Design, synthesis and evaluation of silver-specific ligands

Daubinet, André January 2001 (has links)
Several series of ligands, designed to chelate silver(I) specifically in the presence of base metals, have been synthesised. The ligands include: - dithiodiamide compounds, prepared by the condensation of acetanilide derivatives with 1,2-dibromoethane; propanenitrile and propanoic ester derivatives prepared from pyridine-2-carbaldehyde via the Morita-Baylis-Hillman reaction; and novel malonamide ligands from the reaction of diethyl malonate with a range of primary amines. The malonamide derivatives were prepared under both conventional thermal and microwave-assisted conditions, the latter proving to be highly efficient. The ligands were all characterised using a combination of spectroscopic and, where appropriate, elemental analysis; in one case, the structural assignment was confirmed by single-crystal X-ray analysis. The fragmentation patterns in the electron-impact mass spectra of the malonamide derivatives have been explored using high-resolution and meta-stable peak scanning techniques. Complexes of the malonamide ligands with copper(II) and silver(I) have been synthesised, and examination of these complexes has revealed distinct differences in their co-ordination preferences towards silver(I) and copper(II). Tentative, computer-modelled structures for the complexes have been proposed using the available spectroscopic and elemental analysis data. Computer modelling, at the Molecular Mechanics level, has also been used to assess the capacity of the ligand systems to adopt conformations suitable for the chelation of tetrahedral silver(I). Solvent extraction studies have been undertaken using aqueous metal ion solutions and various organic solvents. The dithiodiamide derivatives typically presented solubility problems, but one of the ligands, N,N´-bis(3-chlorophenyl)-3,6-dithiaoctanediamide, exhibited significant but slow extraction of silver(I) into toluene. The malonamide derivatives, however, proved to be readily soluble in ethyl acetate and, in some cases, exhibited good to excellent selectivity for silver(I) in the presence of the base metals copper and lead. Atomic absorption analysis revealed rapid equilibration times (<15 min) and high extraction efficiencies over a wide pH range (2.78 - 9.0). Metal selectivity has been determined by ICP-MS analysis of the residual silver, copper and lead present in the aqueous phase after 15 min, and one of the ligands, N,N´-bis(2-benzylsulfanylethyl)malonamide, exhibits excellent (≥ 96 %) silver(I) specificity.

Page generated in 0.1138 seconds