Spelling suggestions: "subject:"ligas como memória dde forma iii"" "subject:"ligas como memória dde forma giii""
1 |
Estudo experimental do comportamento térmico e dinâmico de fios de liga com memória de forma NiTi em regime superelástico. / Experimental study of thermal and dynamic behavior of a NiTi shape memory alloy wire under superelastic regime.OLIVEIRA, Henrique Martinni Ramos de. 26 April 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-04-26T19:19:12Z
No. of bitstreams: 1
HENRIQUE MARTINNI RAMOS DE OLIVEIRA - DISSERTAÇÃO PPGEM 2014..pdf: 5119070 bytes, checksum: 23504b03a49c79c4f4d5a4f8815ee9ac (MD5) / Made available in DSpace on 2018-04-26T19:19:12Z (GMT). No. of bitstreams: 1
HENRIQUE MARTINNI RAMOS DE OLIVEIRA - DISSERTAÇÃO PPGEM 2014..pdf: 5119070 bytes, checksum: 23504b03a49c79c4f4d5a4f8815ee9ac (MD5)
Previous issue date: 2014-08-01 / CNPq / Capes / As Ligas com Memória de Forma (LMF) devem seu comportamento único a uma
transformação de fase reversível entre duas estruturas cristalinas: martensita (baixa
temperatura e menor rigidez) e austenita (alta temperatura e maior rigidez). Essa
transformação pode ocorrer em consequência de dois estímulos diferentes: uma
mudança de temperatura ou aplicação de tensão mecânica, ambos acima de valores
críticos característicos desses materiais. Do segundo caso resulta o fenômeno da
superelasticidade, que é a capacidade de recuperar totalmente a deformação após o
carregamento e descarregamento mecânico na fase de mais alta temperatura
(austenita). No decorrer dessa deformação ocorre a transformação de fase induzida
por tensão da austenita para a martensita. Esta transformação é exotérmica e tende
a se estabilizar após certo número de ciclos de deformação. Estudos sobre as
propriedades dinâmicas das LMF mostram que o comportamento superelástico é
dependente da taxa de deformação, ou em outras palavras, da frequência de
excitação. Este comportamento resulta da combinação complexa entre tensão
mecânica, temperatura e taxa de dissipação do calor latente gerado no material.
Observou-se também que altas frequências diminuem a capacidade de dissipação de
calor latente, resultando no aumento de temperatura do material e valores de tensão
de transformação de fase maiores. Considerações como estas são importantes para
a modelagem do comportamento dinâmico do material, aplicável, por exemplo, em
sistemas de absorção de vibração de construções civis. Nesse contexto, o objetivo
deste trabalho é estudar experimentalmente a influência da frequência sobre o
comportamento dinâmico superelástico de fios de LMF Ni-Ti pré-estabilizados, assim
como os efeitos da geração de calor sobre as propriedades mecânicas avaliadas. Os
testes realizados corresponderam a ensaios dinâmicos de tração uniaxial em fios
superelásticos de LMF Ni-Ti com variação de freqüência e simultâneo
acompanhamento de temperatura do material, usando uma máquina de ensaios da
marca MTS modelo MTS 793 series. / Shape Memory Alloys (SMA) owe their behavior unique to a reversible phase
transformation between two crystalline structures: martensite (low temperature and
stiffness) and austenite (high temperature and stiffness). This phase change can occur
as a result of two distinct stimuli: a change in temperature or an applied mechanical
stress, both over certain critical values, characteristic of this materials. From the latter
it results the phenomenon of the superelasticity, which is the ability to totally recover a
deformation after simply ceasing the load. During this deformation occurs a stressinduced
martensitic transformation from austenite to martensite, being it an exothermal
process and that tends to stabilize after a certain number of cycles. Investigation
concerning dynamic properties of SMA demonstrate that its superelastic behavior
depends on the strain rate, or in other words, on the excitation frequency. This behavior
results from the complex combination of mechanical stress, temperature and rate of
latent heat dissipation generated in the material. It was also observed that high
frequencies diminish the capacity of dissipation of latent heat, resulting in an increase
in the material temperature and, therefore, in higher values of phase transformation
stresses. This kind of consideration is fundamental in dynamic behavior modeling,
applicable for instance, in vibration absorption systems in civil building. In this context,
the objective of this work is experimentally study the influence of the frequency on
superelastic behavior of pre-stabilized Ni-Ti SMA superelastic wires, as well as the
effects of heat generation on the evaluated mechanical properties. Dynamical tests
were performed in a uniaxial tensile mode in Ni-Ti SMA superelastic wires varying the
frequency and simultaneously monitoring sample’s temperature, using a test machine
from MTS, model MTS 793 series.
|
2 |
Comportamento termomecânico de fios superelásticos de NiTi Soldados pelos processo TIG. / Thermomechanical behavior of superelastics NiTi wires welded by TIG process.AMORIM, Fernando Andrade. 26 April 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-04-26T21:22:44Z
No. of bitstreams: 1
FERNANDO ANDRADE AMORIM - DISSERTAÇÃO PPGEM 2014..pdf: 6350093 bytes, checksum: 23c947f61b48ed2613bf915ed058b600 (MD5) / Made available in DSpace on 2018-04-26T21:22:44Z (GMT). No. of bitstreams: 1
FERNANDO ANDRADE AMORIM - DISSERTAÇÃO PPGEM 2014..pdf: 6350093 bytes, checksum: 23c947f61b48ed2613bf915ed058b600 (MD5)
Previous issue date: 2014-08-08 / CNPq / Capes / Ligas de NiTi têm possibilitado revolucionar muitos projetos tradicionais
de engenharia com suas propriedades únicas de superelasticidade (SE) e efeito
de memória de forma (EMF). Com o interesse em incorporar esses materiais em
diferentes aplicações e dispositivos, o desenvolvimento de tecnologia eficaz para
soldagem de ligas NiTi torna-se necessário, devido ao fato de esse tipo de união
proporcionar a fabricação das mais diferentes formas geométricas e
combinações entre materiais similares e dissimilares. Nesse contexto, este
estudo teve como objetivo geral determinar as variações das propriedades
termomecânicas em juntas soldadas de fios de NiTi. Para o trabalho, fios
superelásticos de uma LMF NiTi (ASTM F2063) com 0,4 e 0,9 mm de diâmetro,
foram divididos em dois grupos: (a) fios sem tratamento térmico (NiTiA) e (b) fios
com tratamento térmico a 400 °C durante 20 minutos (NiTi400). Em seguida
estes fios foram soldados pelo processo TIG autôgeno, utilizando a soldadora
Micromelt (EDG Equipamentos e Controles). A caracterização termomecânica
dos fios íntegros e soldados foi realizada utilizando ensaios de calorimetria
diferencial de varredura (DSC), análise dinâmico-mecânica (DMA), ensaios de
tração uniaxial em diferentes temperaturas (30°C a 70°C), microscopia óptica
(MO), microscopia eletrônica de varredura (MEV) e micro indentação Vickers. Os
resultados obtidos demonstraram uma boa eficiência do processo TIG ao soldar
os fios NiTi de ambos os grupos. Ensaios de DSC relevaram que o processo de
soldagem pode promover modificações de natureza metalúrgica aos fios de NiTi,
de maneira a reduzir as temperaturas de transformações de fase. Já no que diz
respeito ao aspecto mecânico, os fios soldados apresentaram resistência a
ruptura por tração de até 750 MPa (NiTiA ~ 70 °C) e valores de deformações de
até 8,5 % (NiTiA). / NiTi alloys enabled revolutionize many traditional engineering projects with
uniques properties of superelasticity (SE) and shape memory effect (SME).
Interested on incorporating these materials in different applications and devices,
developments of efficient welding technology for NiTi alloys becomes necessary
due to the fact that this type of process can provide many differents geometric
shapes and combinations of similar and dissimilar materials. In this context, this
study had as main objective to determine variations in thermomechanical
properties for NiTi welded wires. For this work, superelastic NiTi SMA wire (ASTM
F2063) with 0.9 to 0.4 mm in diameter were divided into two groups: (a) wires
without heat treatment (NiTiA) and (b) heat treated wires at 400 ° C for 20 minutes
(NiTi400). Then, these wires were welded by autogenous welding process, using
the Micromelt machine (EDG, Equipment and Controls). The thermomechanical
characterization of as received and as welded wires was performed by using
differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA)
uniaxial tensile test at different temperatures (30°C to 70°C), optical microscopy
(OM), scanning electron microscopy (SEM) and Vickers micro indentation. The
results showed a good efficiency of TIG welding for every NiTi wire studied
groups. DSC curves demonstrates that welding process can cause a
metallurgical changes into NiTi wires, promoting changes in phase transformation
temperatures. The mechanical properties of the welded wire presented a tensile
rupture strength of 750 MPa (NiTi~70 °C) and strain values up to 8.5% (NiTiA).
|
Page generated in 0.071 seconds