• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Light Delivery In Turbid Media

Haylock, Thomas January 2011 (has links)
Light delivery and sample handling systems are essential for any high performance imaging application. The custom design for two such devices with medical imaging applications are presented. The first device, a galvanometer-stage combination, is for general use optical coherence tomography and can be configured to scan over a large range of sample sizes and types. The second device, constructed in parallel, a rotation-linear stage combination, has been carefully designed for a specific imaging task: assessing tumour margins. The design of the two devices is driven by operational requirements and although requirements vary greatly from application to application, there are several common parameters that must be considered for every system. In this thesis, parameters like total scan time, scan resolution, sampling rate, and sample type flexibility are analysed and are some of the primary factors that influence the viability of a system for further development. This work's contribution to medical imaging research is the design of two light delivery systems and an analysis process that can be applied to future iterations of scan systems. The devices are shown to be flexible enough for use in test-bed systems, while providing the necessary functionality to meet the needs of medical histology and pathology. Controlling the light delivery and sample positioning of an imaging device adds important functionality to a scan system and is not a trivial task when high spatial-resolution scan spacing is required. The careful design of an imaging system to meet the unique requirements of the application enables better information and better resulting decision making. Advanced imagery provides new insights and perspectives to everyday scenes. It is these new perspectives that allow for re-evaluation and examination of problems with a fresh eye.
2

Light Delivery In Turbid Media

Haylock, Thomas January 2011 (has links)
Light delivery and sample handling systems are essential for any high performance imaging application. The custom design for two such devices with medical imaging applications are presented. The first device, a galvanometer-stage combination, is for general use optical coherence tomography and can be configured to scan over a large range of sample sizes and types. The second device, constructed in parallel, a rotation-linear stage combination, has been carefully designed for a specific imaging task: assessing tumour margins. The design of the two devices is driven by operational requirements and although requirements vary greatly from application to application, there are several common parameters that must be considered for every system. In this thesis, parameters like total scan time, scan resolution, sampling rate, and sample type flexibility are analysed and are some of the primary factors that influence the viability of a system for further development. This work's contribution to medical imaging research is the design of two light delivery systems and an analysis process that can be applied to future iterations of scan systems. The devices are shown to be flexible enough for use in test-bed systems, while providing the necessary functionality to meet the needs of medical histology and pathology. Controlling the light delivery and sample positioning of an imaging device adds important functionality to a scan system and is not a trivial task when high spatial-resolution scan spacing is required. The careful design of an imaging system to meet the unique requirements of the application enables better information and better resulting decision making. Advanced imagery provides new insights and perspectives to everyday scenes. It is these new perspectives that allow for re-evaluation and examination of problems with a fresh eye.
3

Instrumentation for Interstitial Photodynamic Therapy of Prostatic Carcinoma

Liu, Weiyang Unknown Date
No description available.
4

Instrumentation for Interstitial Photodynamic Therapy of Prostatic Carcinoma

Liu, Weiyang 06 1900 (has links)
This thesis encompasses the development and testing of an interstitial photodynamic therapy (iPDT) system for the treatment of prostate cancer. It begins with the optical characterization of a novel photosensitizer (SL-052) followed by a study of tissue optics as it applies to iPDT. The design and integration of a time-fractionated light delivery system with real-time spectral detection is then examined. An optical phantom test medium is formulated and in vitro system operation and testing is performed. Finally, in vivo experiments are performed on animal models with a focus on canine prostate iPDT. Unique optical results with dosimetric relevance are discovered and investigated. This includes metrics for optically measuring local in vivo SL-052 concentrations in real-time as well as novel oscillatory drug photobleaching and recovery behavior during time-fractionated light delivery. / Photonics and Plasmas
5

Towards developing a model for integrating light delivery vehicles into the rural passenger transport system in Vhembe District Municipality of South Africa

Munwana, Thinandavha Edward 04 February 2015 (has links)
PhDRDV / Institute for Rural Development

Page generated in 0.0529 seconds