Spelling suggestions: "subject:"light filters -- 0ptical properties."" "subject:"light filters -- aoptical properties.""
1 |
Structural inhomogeneity and anisotropy in optical filters and thin films; applications to optical storage media.Balasubramanian, Kunjithapatham. January 1988 (has links)
Optical filters and thin film optical devices play an important role in Science and Industry. Several significant applications have emerged in optics, microelectronics and computer technology. In this work, we study some aspects of their design and applications. One class of optical fibers, known as Christiansen filters, are based on scattering phenomena in suspensions of solid particles in a liquid medium. Some new scattering filters in the visible and the near UV regions and their performance characteristics are reported here. Feasibility to fabricate such optical filters in solid matrix form is established. Some applications of these scattering filters are discussed. After an introduction to the optics of homogeneous and isotropic thin films, I discuss the general design of anisotropic thin film media and a scheme implemented to calculate their performance. Optical anisotropy, produced by the growth-induced columnar microstructure in thin films and its effects on the performance of optical filters are studied. Large shifts in the peak wavelength of a typical narrow band filter are predicted. Magneto-optical (MO) thin film media of great importance to erasable optical data storage technology are studied. An approximate technique based on a 2 x 2 matrix formalism is developed to calculate the normal incidence performance of these media. To investigate anisotropic effects, to incorporate more than one magnetic film with arbitrary orientations of magnetization, and to study oblique incidence performance, a completely general 4 x 4 matrix technique is implemented in a computer program. Effects of substrate/superstrate birefringence in the read-out signal of MO media are investigated. Several optimizing design criteria, particularly, the effectiveness in employing appropriate metal or dielectric reflector layers are studied. The influence of the plasma edge of metals in enhancing the polar Kerr rotation of MO media is discussed with illustrations. A contour plot of the Kerr rotation and reflectance is developed to help in the design of these media. An explanation is given for the observation of Kerr rotation enhancement near the plasma reflection edge of the reflector layer adjacent to the active MO layer and in general, where the reflectance spectrum shows a steep gradient.
|
Page generated in 0.089 seconds