• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Attachment of Lightning Flashes to Wind Turbines

Long, Mengni January 2016 (has links)
The work presented in this thesis aims at investigating the attachment of lightning flashes to wind turbines. Modern wind turbines are highly exposed to lightning strikes, due to the increase of their height and the rotation of the blades. Upward lightning is the dominant mechanism of lightning strikes to them. Therefore, this study evaluates the initiation of the initial upward leader discharge and the process of lightning attachment of dart leaders taking place prior to the first return stroke in upward flashes. This work extends the self-consistent leader inception and propagation model (SLIM) to evaluate the lightning attachment of dart and dart-stepped leaders to grounded objects. SLIM was originally proposed to evaluate the lightning attachment of stepped leaders. Unlike the well-studied lightning attachment of stepped leaders, upward connecting leaders initiated in response to dart and dart-stepped leaders develop under a significantly faster change of the ambient electric field. Additionally, these connecting leaders could develop in warm air pre-conditioned by the previous strokes in the same flash. An analytical expression to evaluate the charge required to thermalize the connecting leader per unit length is also developed in the extended model. This model is validated through the analysis of three attachment events recorded in rocket-triggered lightning experiments. Good agreement between the predicted properties of the upward leaders and the measurements has been found. The model is utilized to evaluate the different conditions where connecting leaders can develop prior to the return strokes in upward lightning. The extended model of SLIM is also applied to study the interception of lightning dart leaders by upward connecting leaders initiated from wind turbines. The evaluation considers the influence of the return stroke peak current, the blade rotation and wind on the attachment of lightning dart leaders to wind turbines. The probability of lightning strikes to the receptors along the blade and on the nacelle is calculated for upward lightning flashes. It is shown that the lightning attachment of dart leaders is a mechanism that can explain the lightning damages to the inboard region of the blades (more than 10 meters from the tip) and the nacelle of wind turbines. Furthermore, the critical stabilization electric field required to initiate upward lightning from wind turbines is evaluated for both ‘self-initiated’ and ‘other-triggered’ upward flashes. The calculation shows that the stabilization electric field of an operating wind turbine periodically changes due to the rotation of its blades.  The initiation of upward lightning is greatly facilitated by the electric field change produced by nearby lightning events. However, the rate of rise of the electric field only has a weak impact on the stabilization electric field. The evaluation of the stabilization electric field provides essential information needed for the estimation of the incidence of upward lightning to wind turbines. / <p>QC 20161201</p>
2

On the Attachment of Lightning Flashes to Grounded Structures

Becerra, Marley January 2008 (has links)
This thesis deals with the physical modeling of the initiation and propagation of upward positive leader discharges from grounded structures during lightning strikes. It includes the analysis of upward leaders initiated under the influence of the electric field produced by a dominant negative cloud charge and due to the combined action of a negative thundercloud and a descending downward stepped negative leader. Thus, a self-consistent model based on the physics of leader discharges is developed for the evaluation of the attachment of lightning flashes to any kind of grounded structure. The predictions of the model have been found to be in good agreement with the results of laboratory long air gap experiments and with classical and altitude rocket triggered lightning experiments. Due to the high application level and predictive power of the developed model, several contributions to the physical understanding of factors influencing the initiation and propagation of upward positive leaders during thunderstorms have been made. For instance, it has been found that the initiation of upward connecting leaders is strongly affected by the average velocity of the downward stepped leader. Similarly, it is shown that the switching voltage impulses used in the laboratory do not “fairly approximate” the electric fields produced by a descending downward leader, as claimed by supporters of Early Streamer Emission (ESE) devices. Furthermore, it is found that the space charge layer created by corona at ground level significantly increases the thundercloud electric fields required to initiate upward lightning leaders from tall objects. On the other hand, it is also shown that the upward leader velocity depends on the downward leader average velocity, the prospective return stroke current, the lateral distance of the downward leader channel and the ambient electric field. By implementing the model to the analysis of complex structures, it has been observed that the corners of actual buildings struck by lightning coincide rather well with the places characterized by low leader inception electric fields. Besides, it has been found that the leader inception zones of the corners of complex structures do not define symmetrical and circular regions as it is generally assumed.
3

Numerical Simulations of Long Spark and Lightning Attachment

Arevalo, Liliana January 2011 (has links)
The research work presented here is concerned with numerical simulations of two different electrical phenomena: Long gap electrical discharges under switching impulses and the lightning attachment process associated with positive upward leaders. The development of positive upward leaders and the progression of discharges in long gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. The physical description and the proposed calculations of the above-mentioned phenomena are based on experimental tests conducted in long spark gaps. The methodology presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. Furthermore, two different approaches to representing the leader channel are applied and compared. Statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. A reasonable agreement was found between the physical model and the experimental test results. A model is proposed to simulate the negative discharges produced by switching impulses using the methodology developed to simulate positive leader discharges and the physics underlying the negative leader phenomena. The validation of the method demonstrated that phenomena such as the pilot leader and negative leader currents are successfully represented. In addition, based on previous work conducted on the physics of lightning and the lightning attachment process, a new methodology is developed and tested. In this new approach, the background electric field and the ionized region, considered in conjunction with the advance of the leader segment, are computed using a novel method. The proposed methodology was employed to test two engineering methods that are accepted in international standards, the mesh method and the electro-geometrical method. The results demonstrated that the engineering approximations are consistent with the physical approach. In addition to the electrical phenomena mentioned above, one should remember that, to simplify the calculation, there are certain real effects arising from the lightning attachment process that have not been considered. In fact, when a structure is subjected to a strong electric field, it is possible to generate multiple upward leaders from that structure. This effect has not been taken into account in the numerical models available previously, and therefore the process of generating multiple upward leaders incepted over a structure is incorporated here. The results have shown that a slight advantage from the background electric field is enough for one upward connecting leader to take over, thereby forcing the others to abort the attachment process.
4

Lightning Shielding Failure Analysis of Ultra High Voltage Power Transmission Lines

Devadiga, Anurag A January 2015 (has links) (PDF)
In India, the natural energy resources (thermal and hydro) are unevenly distributed and are mostly present in the remote areas and the load centers are distributed across various regions of the country. Therefore high voltage lines have become necessary for the devel-opment of large interconnected power networks and for the reliable and economic transfer of power. The increase in electric power demand due to the electric load growth has lead to the expansion of the transmission systems to ultra high voltage levels. Presently, Ultra High Voltage (UHV) power transmission lines are being built to transfer large electric power to distant load centers from the generating stations. Increasing the line voltage increases the surge impedance loading, stability and the thermal capacity of the line. Lightning is one of the major causes for the line outages and interruptions of UHV power lines. A lightning strike generates a very large voltage leading to insulator puncture, melting, burning and pitting of conductors and the supporting hardware. Lightning can lead to transient over-voltages thus leading to ash-over in the power transmission lines which are dangerous for the power equipments as well as for the human beings working in the vicinity. Ground wires are used for the protection of overhead power transmission lines against a lightning stroke. The overhead ground wires are installed such that the lightning attaches to it and shunts the lightning current to the ground through the tower, thus protecting the phase conductors. Shielding failure happens when the lightning strikes the phase conductor instead of the ground wires. Lightning shielding failure is a major con-cern in UHV lines due to their large height, very high operating voltage and wide exposure area of the phase conductors. The lightning over-voltages injected on the phase conductor (shielding failure) nally reaches the substation causing serious threat to the substation components and can lead to temporary or permanent outage of the power transmission system. There have been cases of very high shielding failure ash-overs of UHV lines and thus lightning attachment to power transmission lines need to be studied in detail to reduce the power system line outages. Several models such as electro-geometric model (EGM) and leader progression model (LPM) have been developed to study the shielding failure of power transmission lines. EGM has been extensively used to obtain lightning attachment to power transmission lines but in recent years it is seen that EGM is unable to accurately predict the lightning attach-ment to UHVAC lines. The shielding failure rates obtained by EGM does not match with the observed shielding failure rate for UHV lines. For this reason LPM is considered to obtain lightning attachment to UHV lines but LPM in its initial stage do not deal with the detailed physics of the upward leader inception, i.e., corona inception and unstable as well as stable upward leader inception from the object on the ground. In this thesis a model for the lightning attachment has been developed based on the present knowledge of the lightning physics. The thesis mainly focuses on the modelling of upward leader inception and propagation for lightning attachment to UHV power trans-mission lines. Upward leader inception is modeled based on the corona charge present near the conductor region and the upward leader propagation model is based on the correlation between the lightning induced voltage on the conductor and the voltage drop along the upward leader channel. The present model considers corona inception and modelling of unstable and stable upward leader inception from the ground object for the analysis of the lightning attachment process. The upward leader inception model developed is compared with the previous inception models and the results obtained using the present and previous models are found to be comparable. Lightning striking distances ( nal jump) for various lightning return stroke current were computed for di erent conductor heights using present lightning attachment model. It is seen that the striking distance increases with the increase in lightning re-turn stroke current and increases with increase in conductor heights. The striking distance computed using the present model matches with the value calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The in uence of the conductor operating voltage, cloud electric eld, lightning down-ward leader lateral distance, conductor length, transmission line tower and conductor sag on the upward lightning leader inception are analysed and reported in the thesis. It is found that the lightning attraction to power transmission line increases with increase in conductor positive operating voltage and decreases with increase in conductor negative op-erating voltage. The presence of transmission line tower reduces the lightning attachment to the conductor lines and the probability of lightning strike decreases with the increase in downward leader lateral distance from the conductor lines. The present lightning attachment model is applied to study the shielding failure of UHV power transmission lines rated for 1200 kV ac (delta and horizontal con guration) and for 800 kV dc (with and without a dedicated metallic return conductor) and thereby the lightning shielding failure ash-over rate is computed for the UHV power transmission lines. It is seen that the lightning shielding rate for UHV power transmission lines depend on the lateral distance of the downward leader channel, instantaneous 50 Hz voltage on the transmission line conductor, height of the transmission line conductor, induced voltages on the conductor and the lightning return stroke current.

Page generated in 0.0707 seconds