• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lignin acrylate derivatives and their behaviors in free radical copolymerizations

Wang, Hongxue January 1986 (has links)
Guaiacol and hydroxypropyl-guaiacol were taken as model compounds for lignins and hydroxypropyl lignins to study their vinylation and copolymerization behaviors. Lignin model compounds and lignin were subjected to reaction with isocyanatoethyl methacrylate (IEM) using dibutyltin dilaurate as catalyst. The acrylate derivatives were characterized by elemental analysis, UV, IR, <sup>1</sup>H-NMR, and <sup>13</sup>C-NMR spectroscopy. The acrylated lignin model compounds, guaiacol-IEM urethane (GIU) and hydroxypropyl-guaiacol-IEM urethane (HPGIU), were copolymerized with methyl methacrylate (MMA) and styrene (St) through free radical mechanism. Solution copolymerizations in 1,2-dichloroethane: ethanol were initiated by benzoyl peroxide. The monomer reactivity ratios were investigated for these copolymerization combinations. The copolymer compositions were analyzed by UV for GIU-co-MMA and HPGIU-co-MMA, while methoxyl content determination by HI-GC was used to determine compositions of styrene-based copolymers. The copolymers were characterized by gel permeation chromatography (GPC), and by IR and NMR spectroscopy. The reactivity ratios were computed by use of the Fineman-Ross linearization method, by the KelenTudos equation and by the Yezrielev-Brokhina-Roskin (YBR) numerical method. A comprehensive analysis with respect to the methods used to derive the ratios has shown that the Kelen-Tudos method and the YBR method produce diagnostic reactivity ratios. A great copolymerization tendency of lignins and hydroxypropylated lignins is predicted from the reactivity ratios of the lignin models. A statistical treatment of the model reactivity ratios lead to prediction for chain sequence length distribution of the copolymers formed. Hydroxybutyl lignin IEM urethanes (HBLIU's) were copolymerized with a vinyl-terminated poly(butadiene-acrylonitrile) macromer and MMA to study the copolymerization behaviors of macromolecular lignin acrylate derivatives. The crosslinked films with desired properties were cast from methylene chloride, with benzoyl peroxide as an initiator. The copolymerized network polymers were characterized by sol fraction measurements, differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and by scanning electron microscopy (SEM). The influences of vinyl content in lignin acrylate derivatives and the ratio of lignin derivatives to vinyl monomer or macromer were studied with respect to structure-property relationship in the copolymers. / M.S.
2

Synthesis and properties of lignin epoxide

Nieh, Li-Shih World January 1986 (has links)
A lignin epoxide resin was synthesized and characterized. The epoxidation reaction was studied by reacting hydroxypropylated guaiacol (a lignin-like model compound) and epichlorohydrin using a catalyst system of potassium hydroxide and a phase transfer catalyst in toluene. The parameters studied were different epichlorohydrin level and temperature. The reaction was followed by HPLC and the structure of the product was identified with IR, ¹H and ¹³C NMR spectroscopy. The lignin epoxide was synthesized by reacting hydroxyalkylated (hydroxypropyl and hydroxybutyl) lignin with epichlorohydrin using the reaction conditions defined by the model compound studies. The reaction was studied at different epichlorohydrin level and at elevated and room temperature. The epoxy content of the lignin epoxide was determined by titration with HBr and its structure was identified with IR, ¹H and ¹³C NMR spectroscopy. Lignin epoxides were cured by crosslinking with a diamine and with phthalic anhydride. An amine-terminated rubber was added as toughening agent. Sol fraction and swelling behavior, stress-strain behavior and dynamic mechanical behavior of the cured lignin epoxides were studied in relation to cure conditions. / M.S.

Page generated in 0.048 seconds