• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 125
  • 124
  • 22
  • 19
  • 11
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 576
  • 115
  • 107
  • 101
  • 84
  • 82
  • 77
  • 72
  • 69
  • 68
  • 64
  • 52
  • 50
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The physical action of lime on clay soils ...

Snyder, Robert Mifflin, January 1917 (has links)
Thesis (Ph. D.)--Cornell University, 1918. / Bibliography: p. 25-35.
12

Some chemical relations of lime-sulphur solution, lead arsenate amd nicotine

Hedges, C. C. January 1912 (has links)
Thesis (Ph. D.)--Cornell.
13

Determination of free lime in sai chuun cement

LEUNG, Wing Kai 01 June 1937 (has links)
No description available.
14

The effects of lime, phosphorus and aluminum on the growth and chemical composition of three legumes.

Vickers, John Charles 01 January 1975 (has links) (PDF)
No description available.
15

Evaluation of Bioaerosol Components, Generation Factors, and Airborne Transport Associated with Lime Treatment of Lead-Contaminated Sediment for Beneficial Use Purposes

Barth, Edwin F., III 28 September 2006 (has links)
No description available.
16

Om kalkindustrin på Gotland 2 : Ur den gotländska kalkindustrins historia, åren 1942-1945 / About the lime industry on Gotland 2 : From the lime industry of Gotland, 1942-2015

Bengtsson, Marcus January 2015 (has links)
Gotland has a very long tradition of lime burning. Traces of lime burning on Gotland stretch back to the 12th century. An inventory of all the lime kilns in Gotland was made in 1942. Since then the market, the use and the tradition of lime burning have changed significantly. By the start of WW2 a shortage of black coal occurred. This meant that the large, traditional lime kilns could no longer be operated with the same capacity. The small, wood-burning kilns were the only furnaces that survived. With the cement's entry the demand for lime mortar got heavily reduced, which in turn meant the end for the last lime kilns. The cement quickly proved inadequate in many situations, especially in the field of monument care​​, and the demand for traditional lime mortar increased again already in the 1960s. Since then, three lime kilns were taken into use on Gotland; two smaller, traditional lime kilns and one large, industrial kiln. This thesis intends to follow up on the inventory that was made in 1942 in order to create a basis for further discussion of the historical values the lime kilns possesses and how these values can be cared for. In order to ensure the being of cultural heritage of the traditional lime industry, it requires popular demand, care and knowledge of the furnace, its use and production and its product. / Gotland har en mycket lång tradition av kalkbränning. Spår av kalkbränning sträcker sig på ön tillbaks till 1100-talet. En inventering av samtliga kalkugnar och kalkmilor på Gotland gjordes år 1942. Sedan dess har marknaden, användningen och traditionen av kalkbränning förändrats kraftigt. Vid andra världskrigets början uppstod en bristsituation på stenkol. Detta medförde att de stora, traditionella kalkugnarna inte längre kunde drivas med samma kapacitet. De mindre, vedeldade ugnarna var de enda ugnarna som överlevde. Med cementens intåg minskade även efterfrågan på kalkbruk, vilket i sin tur betydde slutet för de sista kalkugnarna. Cementen visade sig snabbt vara bristfällig i flera situationer, särskilt inom kulturvårdens praktik, och efterfrågan på traditionellt kalkbruk ökade igen redan på 1960-talet. Sedan dess har tre kalkugnar tagits i bruk på Gotland; två mindre, traditionella kalkugnar och en stor, industriell ugn. Uppsatsen ämnar följa upp inventeringen som gjordes 1942 för att skapa ett underlag för att vidare resonera kring de kulturhistoriska värden kalkugnarna besitter och hur dessa tas till vara. För att kunna vårda kulturarvet från den traditionella kalkindustrins dagar fordras efterfrågan på kalk, vård och kunskap om ugnarna, dess användning och produktion och dess produkt.
17

Dissolution rate and diffusivity of lime in steelmaking slag and development of fluoride-free fluxes

Haji Amini, Shahriar, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
A rotating disk technique was used to determine the dissolution rate and diffusivity of CaO and MgO in slags. The dissolution rate was deduced from the measured changes in concentration of oxides in slag with respect to reaction time. The experimental set- up was initially tested with dissolution of magnesia in the CaO ??? 55 wt% Al2O3 slag at 1430 ??C and a measured rate of 2.7 ??10 -5 g/cm2.s was obtained. The dissolution rate was increased by slag chemistry and ranged from 6.5??10-5 to 2.1??10-4 g/cm2.s. The dissolution rate of CaO was measured in CaO ??? 42 wt% Al2O3 ??? 8% SiO2 based slag. The measured dissolution rates were found to be strongly dependent on the slag chemistry and temperature and ranged from 5.03??10 -5 to 3.3??10 -4 g/cm2.s. The dissolution rates were strongly dependent on the rotation speed and results indicate mass transfer in the slag phase to be rate- limiting step. The diffusivity of MgO / CaO was calculated from the dissolution rate and solubility data, using known mass transfer correlations. The diffusivity of MgO in the calcium aluminate slag at 1430 ??C was found to be about 1.1??10-5 cm2/s. Additions of 5 and 10 wt% Fe2O3 increased the diffusivity by a factor ~ 1.5 to 3, respectively. However, with introduction of (CaF2 5 wt% + Fe2O3 5 wt%) and (CaF2 5 wt% + Fe2O3 10 wt%) in the slag, the diffusivity increased considerably by a factor of about 29 and 11, respectively. The diffusivity of CaO in calcium aluminosilicate was measured to be in the order of 10-6 to 10-5 over a temperature range of 1430 ??? 1600 ??C. CaF2 increased the diffusivity by a factor of 3 to 5 while MnOx and FeOx, ilmenite and TiO 2 increased the diffusivity substantially and SiO2 had an opposite effect. The measured diffusivities are in accord with published data on comparable systems and are discussed with reference to Eyring theory. It was concluded that MnOx, FeOx and ilmenite in the slag increase the dissolution rate and diffusivity of lime, showing comparable results with respect to CaF2.
18

Dissolution rate and diffusivity of lime in steelmaking slag and development of fluoride-free fluxes

Haji Amini, Shahriar, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
A rotating disk technique was used to determine the dissolution rate and diffusivity of CaO and MgO in slags. The dissolution rate was deduced from the measured changes in concentration of oxides in slag with respect to reaction time. The experimental set- up was initially tested with dissolution of magnesia in the CaO ??? 55 wt% Al2O3 slag at 1430 ??C and a measured rate of 2.7 ??10 -5 g/cm2.s was obtained. The dissolution rate was increased by slag chemistry and ranged from 6.5??10-5 to 2.1??10-4 g/cm2.s. The dissolution rate of CaO was measured in CaO ??? 42 wt% Al2O3 ??? 8% SiO2 based slag. The measured dissolution rates were found to be strongly dependent on the slag chemistry and temperature and ranged from 5.03??10 -5 to 3.3??10 -4 g/cm2.s. The dissolution rates were strongly dependent on the rotation speed and results indicate mass transfer in the slag phase to be rate- limiting step. The diffusivity of MgO / CaO was calculated from the dissolution rate and solubility data, using known mass transfer correlations. The diffusivity of MgO in the calcium aluminate slag at 1430 ??C was found to be about 1.1??10-5 cm2/s. Additions of 5 and 10 wt% Fe2O3 increased the diffusivity by a factor ~ 1.5 to 3, respectively. However, with introduction of (CaF2 5 wt% + Fe2O3 5 wt%) and (CaF2 5 wt% + Fe2O3 10 wt%) in the slag, the diffusivity increased considerably by a factor of about 29 and 11, respectively. The diffusivity of CaO in calcium aluminosilicate was measured to be in the order of 10-6 to 10-5 over a temperature range of 1430 ??? 1600 ??C. CaF2 increased the diffusivity by a factor of 3 to 5 while MnOx and FeOx, ilmenite and TiO 2 increased the diffusivity substantially and SiO2 had an opposite effect. The measured diffusivities are in accord with published data on comparable systems and are discussed with reference to Eyring theory. It was concluded that MnOx, FeOx and ilmenite in the slag increase the dissolution rate and diffusivity of lime, showing comparable results with respect to CaF2.
19

Dissolution rate and diffusivity of lime in steelmaking slag and development of fluoride-free fluxes

Haji Amini, Shahriar, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
A rotating disk technique was used to determine the dissolution rate and diffusivity of CaO and MgO in slags. The dissolution rate was deduced from the measured changes in concentration of oxides in slag with respect to reaction time. The experimental set- up was initially tested with dissolution of magnesia in the CaO ??? 55 wt% Al2O3 slag at 1430 ??C and a measured rate of 2.7 ??10 -5 g/cm2.s was obtained. The dissolution rate was increased by slag chemistry and ranged from 6.5??10-5 to 2.1??10-4 g/cm2.s. The dissolution rate of CaO was measured in CaO ??? 42 wt% Al2O3 ??? 8% SiO2 based slag. The measured dissolution rates were found to be strongly dependent on the slag chemistry and temperature and ranged from 5.03??10 -5 to 3.3??10 -4 g/cm2.s. The dissolution rates were strongly dependent on the rotation speed and results indicate mass transfer in the slag phase to be rate- limiting step. The diffusivity of MgO / CaO was calculated from the dissolution rate and solubility data, using known mass transfer correlations. The diffusivity of MgO in the calcium aluminate slag at 1430 ??C was found to be about 1.1??10-5 cm2/s. Additions of 5 and 10 wt% Fe2O3 increased the diffusivity by a factor ~ 1.5 to 3, respectively. However, with introduction of (CaF2 5 wt% + Fe2O3 5 wt%) and (CaF2 5 wt% + Fe2O3 10 wt%) in the slag, the diffusivity increased considerably by a factor of about 29 and 11, respectively. The diffusivity of CaO in calcium aluminosilicate was measured to be in the order of 10-6 to 10-5 over a temperature range of 1430 ??? 1600 ??C. CaF2 increased the diffusivity by a factor of 3 to 5 while MnOx and FeOx, ilmenite and TiO 2 increased the diffusivity substantially and SiO2 had an opposite effect. The measured diffusivities are in accord with published data on comparable systems and are discussed with reference to Eyring theory. It was concluded that MnOx, FeOx and ilmenite in the slag increase the dissolution rate and diffusivity of lime, showing comparable results with respect to CaF2.
20

Dissolution rate and diffusivity of lime in steelmaking slag and development of fluoride-free fluxes

Haji Amini, Shahriar, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
A rotating disk technique was used to determine the dissolution rate and diffusivity of CaO and MgO in slags. The dissolution rate was deduced from the measured changes in concentration of oxides in slag with respect to reaction time. The experimental set- up was initially tested with dissolution of magnesia in the CaO ??? 55 wt% Al2O3 slag at 1430 ??C and a measured rate of 2.7 ??10 -5 g/cm2.s was obtained. The dissolution rate was increased by slag chemistry and ranged from 6.5??10-5 to 2.1??10-4 g/cm2.s. The dissolution rate of CaO was measured in CaO ??? 42 wt% Al2O3 ??? 8% SiO2 based slag. The measured dissolution rates were found to be strongly dependent on the slag chemistry and temperature and ranged from 5.03??10 -5 to 3.3??10 -4 g/cm2.s. The dissolution rates were strongly dependent on the rotation speed and results indicate mass transfer in the slag phase to be rate- limiting step. The diffusivity of MgO / CaO was calculated from the dissolution rate and solubility data, using known mass transfer correlations. The diffusivity of MgO in the calcium aluminate slag at 1430 ??C was found to be about 1.1??10-5 cm2/s. Additions of 5 and 10 wt% Fe2O3 increased the diffusivity by a factor ~ 1.5 to 3, respectively. However, with introduction of (CaF2 5 wt% + Fe2O3 5 wt%) and (CaF2 5 wt% + Fe2O3 10 wt%) in the slag, the diffusivity increased considerably by a factor of about 29 and 11, respectively. The diffusivity of CaO in calcium aluminosilicate was measured to be in the order of 10-6 to 10-5 over a temperature range of 1430 ??? 1600 ??C. CaF2 increased the diffusivity by a factor of 3 to 5 while MnOx and FeOx, ilmenite and TiO 2 increased the diffusivity substantially and SiO2 had an opposite effect. The measured diffusivities are in accord with published data on comparable systems and are discussed with reference to Eyring theory. It was concluded that MnOx, FeOx and ilmenite in the slag increase the dissolution rate and diffusivity of lime, showing comparable results with respect to CaF2.

Page generated in 0.044 seconds