• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A measure for the number of commuting subgroups in compact groups

Kazeem, Funmilayo Eniola 31 July 2019 (has links)
The present thesis is devoted to the construction of a probability measure which counts the pairs of closed commuting subgroups in infinite groups. This measure turns out to be an extension of what was known in the finite case as subgroup commutativity degree and opens a new approach of study for the class of near abelian groups, recently introduced in [24, 27]. The extremal case of probability one characterises the topologically quasihamiltonian groups, studied originally by K. Iwasawa [30, 31] in the abstract case and then by F. K¨ummich [35, 36, 37], C. Scheiderer [45, 46], P. Diaconis [11] and S. Strunkov [48] in the topological case. Our probability measure turns out to be a useful tool in describing the distance of a profinite group from being topologically quasihamiltonian. We have been inspired by an idea of H. Heyer in the present context of investigation and in fact we generalise some of his techniques, in order to construct a probability measure on the space of closed subgroups of a profinite group. This has been possible because the space of closed subgroups of a profinite group may be approximated by finite spaces and the consequence is that our probability measure may be approximated by finite probability measures. While we have a satisfactory description for profinite groups and compact groups, the case of locally compact groups remains open in its generality.

Page generated in 0.2378 seconds