• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicação do modelo da soma-ponderada-de-gases-cinzas na solução da transferência radiante em meios não isotérmicos e não-homogêneos

Duciak, Gustavo January 2013 (has links)
A integração da equação da transferência radiante (RTE) é uma tarefa complexa devido a forte variação do coeficiente de absorção com relação ao número de onda. O modelo da soma ponderada dos gases cinza (WSGG) evita a integração linha por linha da RTE reduzindo o esforço computacional na resolução de problemas que envolvam gases participantes. Com a atualização dos coeficientes do WSGG, obtidos através do banco de dados HITEMP 2010, este trabalho se propôs a validá-los por meio de problemas unidimensionais de transferência de calor radiante. Os problemas são resolvidos pelo modelo WSGG e comparados com a solução obtida pela integração LBL (solução benchmark). Nas comparações foram utilizados diferentes perfis de temperatura, distâncias características, gradientes de temperatura e concentrações de espécies. Nos casos analisados é possível verificar uma boa concordância geral entre os resultados WSGG e LBL. O modelo também é testado na resolução de perfis advindos de seções de uma câmara de combustão cilíndrica que apresentaram condições diferentes para os quais os coeficientes WSGG foram propostos. Mesmo assim os resultados obtidos apresentaram uma boa concordância para o termo fonte radiante e para o fluxo de calor, sendo que os maiores erros foram observados na entrada da câmera onde os gradientes de temperatura são mais significativos. / The spectral integration of the radiative transfer equation (RTE) is still a complex task due to the strong variation of the absorption coefficient with the wavenumber. The Weighted-Sumof- Gray-Gases (WSGG) model avoids the Line-by-Line (LBL) integration of RTE. The aim of this study is to evaluate the updated WSGG coefficients, obtained from the database HITEMP 2010, in one-dimensional problems of radiative heat transfer. The problems are solved by the WSGG model and compared with the solution obtained by the LBL integration (benchmark solution). Various temperature and concentration profiles were evaluated and showed a good overall agreement between the WSGG and LBL results. The model was also tested by solving profiles arising from cylindrical combustion chamber and the obtained results showed good agreement for the radiative heat source term and the heat flux. The largest errors were observed near the chamber entrance where the temperature gradients are most significant.
2

Aplicação do modelo da soma-ponderada-de-gases-cinzas na solução da transferência radiante em meios não isotérmicos e não-homogêneos

Duciak, Gustavo January 2013 (has links)
A integração da equação da transferência radiante (RTE) é uma tarefa complexa devido a forte variação do coeficiente de absorção com relação ao número de onda. O modelo da soma ponderada dos gases cinza (WSGG) evita a integração linha por linha da RTE reduzindo o esforço computacional na resolução de problemas que envolvam gases participantes. Com a atualização dos coeficientes do WSGG, obtidos através do banco de dados HITEMP 2010, este trabalho se propôs a validá-los por meio de problemas unidimensionais de transferência de calor radiante. Os problemas são resolvidos pelo modelo WSGG e comparados com a solução obtida pela integração LBL (solução benchmark). Nas comparações foram utilizados diferentes perfis de temperatura, distâncias características, gradientes de temperatura e concentrações de espécies. Nos casos analisados é possível verificar uma boa concordância geral entre os resultados WSGG e LBL. O modelo também é testado na resolução de perfis advindos de seções de uma câmara de combustão cilíndrica que apresentaram condições diferentes para os quais os coeficientes WSGG foram propostos. Mesmo assim os resultados obtidos apresentaram uma boa concordância para o termo fonte radiante e para o fluxo de calor, sendo que os maiores erros foram observados na entrada da câmera onde os gradientes de temperatura são mais significativos. / The spectral integration of the radiative transfer equation (RTE) is still a complex task due to the strong variation of the absorption coefficient with the wavenumber. The Weighted-Sumof- Gray-Gases (WSGG) model avoids the Line-by-Line (LBL) integration of RTE. The aim of this study is to evaluate the updated WSGG coefficients, obtained from the database HITEMP 2010, in one-dimensional problems of radiative heat transfer. The problems are solved by the WSGG model and compared with the solution obtained by the LBL integration (benchmark solution). Various temperature and concentration profiles were evaluated and showed a good overall agreement between the WSGG and LBL results. The model was also tested by solving profiles arising from cylindrical combustion chamber and the obtained results showed good agreement for the radiative heat source term and the heat flux. The largest errors were observed near the chamber entrance where the temperature gradients are most significant.
3

Aplicação do modelo da soma-ponderada-de-gases-cinzas na solução da transferência radiante em meios não isotérmicos e não-homogêneos

Duciak, Gustavo January 2013 (has links)
A integração da equação da transferência radiante (RTE) é uma tarefa complexa devido a forte variação do coeficiente de absorção com relação ao número de onda. O modelo da soma ponderada dos gases cinza (WSGG) evita a integração linha por linha da RTE reduzindo o esforço computacional na resolução de problemas que envolvam gases participantes. Com a atualização dos coeficientes do WSGG, obtidos através do banco de dados HITEMP 2010, este trabalho se propôs a validá-los por meio de problemas unidimensionais de transferência de calor radiante. Os problemas são resolvidos pelo modelo WSGG e comparados com a solução obtida pela integração LBL (solução benchmark). Nas comparações foram utilizados diferentes perfis de temperatura, distâncias características, gradientes de temperatura e concentrações de espécies. Nos casos analisados é possível verificar uma boa concordância geral entre os resultados WSGG e LBL. O modelo também é testado na resolução de perfis advindos de seções de uma câmara de combustão cilíndrica que apresentaram condições diferentes para os quais os coeficientes WSGG foram propostos. Mesmo assim os resultados obtidos apresentaram uma boa concordância para o termo fonte radiante e para o fluxo de calor, sendo que os maiores erros foram observados na entrada da câmera onde os gradientes de temperatura são mais significativos. / The spectral integration of the radiative transfer equation (RTE) is still a complex task due to the strong variation of the absorption coefficient with the wavenumber. The Weighted-Sumof- Gray-Gases (WSGG) model avoids the Line-by-Line (LBL) integration of RTE. The aim of this study is to evaluate the updated WSGG coefficients, obtained from the database HITEMP 2010, in one-dimensional problems of radiative heat transfer. The problems are solved by the WSGG model and compared with the solution obtained by the LBL integration (benchmark solution). Various temperature and concentration profiles were evaluated and showed a good overall agreement between the WSGG and LBL results. The model was also tested by solving profiles arising from cylindrical combustion chamber and the obtained results showed good agreement for the radiative heat source term and the heat flux. The largest errors were observed near the chamber entrance where the temperature gradients are most significant.
4

Aplicação do modelo da soma-ponderada-de-gases-cinza a sistemas com superfícies não cinzas

Fonseca, Roberta Juliana Collet da January 2017 (has links)
A radiação térmica é o principal mecanismo de transferência de calor em fenômenos que envolvem meios participantes em temperaturas elevadas, tais como em processos de combustão. A dependência fortemente irregular do coeficiente de absorção em relação ao número de onda torna desafiador o estudo de situações em que a radiação é apenas parte de um problema mais complexo. A exatidão do cálculo da radiação fica condicionada à solução da equação da transferência radiativa (RTE) por meio da integração linha-por-linha (LBL), sendo, muitas vezes, impraticável, em virtude do esforço computacional requerido para contabilizar as centenas de milhares ou milhões de linhas espectrais do coeficiente de absorção. Alternativamente, modelos espectrais, como a soma-ponderada-de-gases-cinza (WSGG), têm sido empregados de maneira eficaz na obtenção de resultados em substituição à integração LBL. Nessa dissertação, o modelo WSGG é aplicado na solução da transferência de calor radiativa em um sistema unidimensional, formado por duas placas planas paralelas infinitas e preenchido por uma mistura homogênea de dióxido de carbono e vapor de água, considerando-se perfis distintos de temperatura. Diferentemente da maioria dos estudos da literatura que empregam a mesma geometria, mas com paredes negras, o presente trabalho supõe superfícies cinzas e não cinzas. O objetivo central é, portanto, avaliar o erro em se assumir fronteiras negras quando estas não apresentam esse comportamento. Os resultados para o modelo WSGG aplicado a superfícies não cinzas, cinzas e negras são comparados com a solução linha-por-linha para paredes não cinzas. As análises dos desvios entre as soluções pelo modelo da soma-ponderada-de-gases-cinza e pela integração LBL mostram que a suposição de paredes negras, para casos em que as superfícies deveriam ser consideradas não cinzas, pode levar a erros de até 50% nos resultados para o fluxo de calor e para o termo fonte radiativo. / Thermal radiation is the main heat transfer mechanism in phenomena that involves high temperatures, such as in combustion processes. The strongly irregular dependence of the absorption coefficient on the wavenumber makes challenger the study of situations in which the radiation is only part of a more complex problem. The accuracy of the calculation of the radiation is conditioned to the solution of the radiative transfer equation (RTE) by line-by-line (LBL) integration, being frequently impracticable, due to the computational effort required to account for the hundreds of thousands or millions spectral lines of the absorption coefficient. Alternatively, spectral models, such as the weighted-sum-of-gray-gases (WSGG) model, have been used with success to obtain results in comparison to LBL integration. In this study, the WSGG model is applied to solve the radiative heat transfer in a one-dimensional system, formed by two infinite flat parallel plates and filled by a homogeneous mixture of carbon dioxide and water vapor, for different temperature profiles. Unlike most studies of the literature that employ the same geometry, but with black walls, the present work supposes gray and non-gray surfaces. The central objective is, therefore, to evaluate the error in assuming black boundaries when they do not present this behavior. The results for the WSGG model applied to non-gray, gray and black surfaces are compared with the line-by-line solution for non-gray walls. Analyzes of the deviations between the solutions by the weighted-sum-of-gray-gases model and the LBL integration show that the assumption of black walls, for cases where the surfaces should be considered as non-gray, may lead to errors of up to 50% in results for the heat flux and the radiative source term.
5

Geração de novas correlações da soma-ponderada-de-gases-cinza para H2O e CO2 em alta pressão

Coelho, Felipe Ramos January 2017 (has links)
A radiação térmica é frequentemente considerada um mecanismo de transferência de calor muito importante em processos de combustão em alta pressão, devido à presença de meios participantes e às altas temperaturas envolvidas. Resolver a radiação térmica em meios participantes é um problema complexo devido à natureza integro-diferencial da equação governante e à dependência espectral altamente irregular das propriedades de radiação. Atualmente, o método mais preciso para resolver a integração espectral é o método linha-porlinha (LBL), que possui um custo computacional muito elevado. Para contornar essa dificuldade, o problema espectral é geralmente resolvido usando modelos espectrais e, consequentemente, a equação da transferência radiativa (RTE) é simplificada. Um destes modelos é o da soma-ponderada-de-gases-cinza (WSGG), que substitui o comportamento espectral altamente irregular do coeficiente de absorção, por bandas de coeficientes de absorção uniforme e tem mostrado um bom desempenho em diversas aplicações, mesmo sendo um modelo bastante simplificado. Entretanto, recentemente alguns autores não obtiveram bons resultados ao tentar aplicar o WSGG a problemas de combustão em alta pressão. Este artigo desenvolve um modelo WSGG para CO2 e H2O em condições de alta pressão. Para validar o modelo, a emitância total é calculada usando os coeficientes WSGG e comparada à solução do LBL obtida usando o banco de dados espectrais HITEMP 2010. Os resultados mostraram grande convergência entre os valores de emitância de ambos os métodos, mesmo para valores de alta pressão, tanto para o CO2 quanto para H2O, provando que o método WSGG é aplicável a condições de alta pressão. O modelo também foi validado pelo cálculo do fluxo de calor e termo fonte radiativo, e comparando-os com os obtidos através do método LBL. O H2O teve melhores resultados para baixas pressões, enquanto o CO2 apresentou melhores resultados para pressões mais altas. O efeito da pressão total sobre a solução de LBL foi maior para o H2O, o que pode ser um dos motivos pelo qual os desvios foram maiores para os casos de alta pressão. / Thermal radiation is often a very important heat transfer mechanism in high pressure combustion processes due to the presence of participating media and the high temperatures involved. Solving thermal radiation in participating media is a tough problem due to the integro-differential governing equation and the complex spectral dependence of radiation properties. Currently, the most accurate method to solve the spectral integration is the line-byline (LBL) method, which has a very high computational cost. In order to avoid this drawback the spectral problem is usually solved using spectral models, and as a consequence the radiative transfer equation (RTE) is simplified. One of the models is the weighted-sum-ofgray- gases (WSGG) which replaces the highly irregular spectral behavior of the absorption coefficient by bands of uniform absorption coefficients, and has shown great performance a lot of applications even though it is a very simple model. However, recently some authors didn’t have good results when trying to apply the WSGG to high pressure combustion problems. This thesis develops a WSGG model for both CO2 and H2O on high pressure conditions. In order to validate the model the total emittance is calculated using the WSGG coefficients and compared to the LBL solution which was obtained using the HITEMP 2010 spectral emissivity database. The results showed that the emittance values from both methods were very close even for high pressure values for both CO2 and H2O proving that the WSGG method is applicable to high pressure conditions. The model was also validated by calculating the radiative heat flux and source, and comparing them with the LBL method. H2O had better results for low pressures while CO2 had better results for higher pressures. The effect of total pressure on the LBL solution was higher for H2O, which might be the reason why deviations were higher at high pressure values.
6

Aplicação do modelo da soma-ponderada-de-gases-cinza a sistemas com superfícies não cinzas

Fonseca, Roberta Juliana Collet da January 2017 (has links)
A radiação térmica é o principal mecanismo de transferência de calor em fenômenos que envolvem meios participantes em temperaturas elevadas, tais como em processos de combustão. A dependência fortemente irregular do coeficiente de absorção em relação ao número de onda torna desafiador o estudo de situações em que a radiação é apenas parte de um problema mais complexo. A exatidão do cálculo da radiação fica condicionada à solução da equação da transferência radiativa (RTE) por meio da integração linha-por-linha (LBL), sendo, muitas vezes, impraticável, em virtude do esforço computacional requerido para contabilizar as centenas de milhares ou milhões de linhas espectrais do coeficiente de absorção. Alternativamente, modelos espectrais, como a soma-ponderada-de-gases-cinza (WSGG), têm sido empregados de maneira eficaz na obtenção de resultados em substituição à integração LBL. Nessa dissertação, o modelo WSGG é aplicado na solução da transferência de calor radiativa em um sistema unidimensional, formado por duas placas planas paralelas infinitas e preenchido por uma mistura homogênea de dióxido de carbono e vapor de água, considerando-se perfis distintos de temperatura. Diferentemente da maioria dos estudos da literatura que empregam a mesma geometria, mas com paredes negras, o presente trabalho supõe superfícies cinzas e não cinzas. O objetivo central é, portanto, avaliar o erro em se assumir fronteiras negras quando estas não apresentam esse comportamento. Os resultados para o modelo WSGG aplicado a superfícies não cinzas, cinzas e negras são comparados com a solução linha-por-linha para paredes não cinzas. As análises dos desvios entre as soluções pelo modelo da soma-ponderada-de-gases-cinza e pela integração LBL mostram que a suposição de paredes negras, para casos em que as superfícies deveriam ser consideradas não cinzas, pode levar a erros de até 50% nos resultados para o fluxo de calor e para o termo fonte radiativo. / Thermal radiation is the main heat transfer mechanism in phenomena that involves high temperatures, such as in combustion processes. The strongly irregular dependence of the absorption coefficient on the wavenumber makes challenger the study of situations in which the radiation is only part of a more complex problem. The accuracy of the calculation of the radiation is conditioned to the solution of the radiative transfer equation (RTE) by line-by-line (LBL) integration, being frequently impracticable, due to the computational effort required to account for the hundreds of thousands or millions spectral lines of the absorption coefficient. Alternatively, spectral models, such as the weighted-sum-of-gray-gases (WSGG) model, have been used with success to obtain results in comparison to LBL integration. In this study, the WSGG model is applied to solve the radiative heat transfer in a one-dimensional system, formed by two infinite flat parallel plates and filled by a homogeneous mixture of carbon dioxide and water vapor, for different temperature profiles. Unlike most studies of the literature that employ the same geometry, but with black walls, the present work supposes gray and non-gray surfaces. The central objective is, therefore, to evaluate the error in assuming black boundaries when they do not present this behavior. The results for the WSGG model applied to non-gray, gray and black surfaces are compared with the line-by-line solution for non-gray walls. Analyzes of the deviations between the solutions by the weighted-sum-of-gray-gases model and the LBL integration show that the assumption of black walls, for cases where the surfaces should be considered as non-gray, may lead to errors of up to 50% in results for the heat flux and the radiative source term.
7

Geração de novas correlações da soma-ponderada-de-gases-cinza para H2O e CO2 em alta pressão

Coelho, Felipe Ramos January 2017 (has links)
A radiação térmica é frequentemente considerada um mecanismo de transferência de calor muito importante em processos de combustão em alta pressão, devido à presença de meios participantes e às altas temperaturas envolvidas. Resolver a radiação térmica em meios participantes é um problema complexo devido à natureza integro-diferencial da equação governante e à dependência espectral altamente irregular das propriedades de radiação. Atualmente, o método mais preciso para resolver a integração espectral é o método linha-porlinha (LBL), que possui um custo computacional muito elevado. Para contornar essa dificuldade, o problema espectral é geralmente resolvido usando modelos espectrais e, consequentemente, a equação da transferência radiativa (RTE) é simplificada. Um destes modelos é o da soma-ponderada-de-gases-cinza (WSGG), que substitui o comportamento espectral altamente irregular do coeficiente de absorção, por bandas de coeficientes de absorção uniforme e tem mostrado um bom desempenho em diversas aplicações, mesmo sendo um modelo bastante simplificado. Entretanto, recentemente alguns autores não obtiveram bons resultados ao tentar aplicar o WSGG a problemas de combustão em alta pressão. Este artigo desenvolve um modelo WSGG para CO2 e H2O em condições de alta pressão. Para validar o modelo, a emitância total é calculada usando os coeficientes WSGG e comparada à solução do LBL obtida usando o banco de dados espectrais HITEMP 2010. Os resultados mostraram grande convergência entre os valores de emitância de ambos os métodos, mesmo para valores de alta pressão, tanto para o CO2 quanto para H2O, provando que o método WSGG é aplicável a condições de alta pressão. O modelo também foi validado pelo cálculo do fluxo de calor e termo fonte radiativo, e comparando-os com os obtidos através do método LBL. O H2O teve melhores resultados para baixas pressões, enquanto o CO2 apresentou melhores resultados para pressões mais altas. O efeito da pressão total sobre a solução de LBL foi maior para o H2O, o que pode ser um dos motivos pelo qual os desvios foram maiores para os casos de alta pressão. / Thermal radiation is often a very important heat transfer mechanism in high pressure combustion processes due to the presence of participating media and the high temperatures involved. Solving thermal radiation in participating media is a tough problem due to the integro-differential governing equation and the complex spectral dependence of radiation properties. Currently, the most accurate method to solve the spectral integration is the line-byline (LBL) method, which has a very high computational cost. In order to avoid this drawback the spectral problem is usually solved using spectral models, and as a consequence the radiative transfer equation (RTE) is simplified. One of the models is the weighted-sum-ofgray- gases (WSGG) which replaces the highly irregular spectral behavior of the absorption coefficient by bands of uniform absorption coefficients, and has shown great performance a lot of applications even though it is a very simple model. However, recently some authors didn’t have good results when trying to apply the WSGG to high pressure combustion problems. This thesis develops a WSGG model for both CO2 and H2O on high pressure conditions. In order to validate the model the total emittance is calculated using the WSGG coefficients and compared to the LBL solution which was obtained using the HITEMP 2010 spectral emissivity database. The results showed that the emittance values from both methods were very close even for high pressure values for both CO2 and H2O proving that the WSGG method is applicable to high pressure conditions. The model was also validated by calculating the radiative heat flux and source, and comparing them with the LBL method. H2O had better results for low pressures while CO2 had better results for higher pressures. The effect of total pressure on the LBL solution was higher for H2O, which might be the reason why deviations were higher at high pressure values.
8

Aplicação do modelo da soma-ponderada-de-gases-cinza a sistemas com superfícies não cinzas

Fonseca, Roberta Juliana Collet da January 2017 (has links)
A radiação térmica é o principal mecanismo de transferência de calor em fenômenos que envolvem meios participantes em temperaturas elevadas, tais como em processos de combustão. A dependência fortemente irregular do coeficiente de absorção em relação ao número de onda torna desafiador o estudo de situações em que a radiação é apenas parte de um problema mais complexo. A exatidão do cálculo da radiação fica condicionada à solução da equação da transferência radiativa (RTE) por meio da integração linha-por-linha (LBL), sendo, muitas vezes, impraticável, em virtude do esforço computacional requerido para contabilizar as centenas de milhares ou milhões de linhas espectrais do coeficiente de absorção. Alternativamente, modelos espectrais, como a soma-ponderada-de-gases-cinza (WSGG), têm sido empregados de maneira eficaz na obtenção de resultados em substituição à integração LBL. Nessa dissertação, o modelo WSGG é aplicado na solução da transferência de calor radiativa em um sistema unidimensional, formado por duas placas planas paralelas infinitas e preenchido por uma mistura homogênea de dióxido de carbono e vapor de água, considerando-se perfis distintos de temperatura. Diferentemente da maioria dos estudos da literatura que empregam a mesma geometria, mas com paredes negras, o presente trabalho supõe superfícies cinzas e não cinzas. O objetivo central é, portanto, avaliar o erro em se assumir fronteiras negras quando estas não apresentam esse comportamento. Os resultados para o modelo WSGG aplicado a superfícies não cinzas, cinzas e negras são comparados com a solução linha-por-linha para paredes não cinzas. As análises dos desvios entre as soluções pelo modelo da soma-ponderada-de-gases-cinza e pela integração LBL mostram que a suposição de paredes negras, para casos em que as superfícies deveriam ser consideradas não cinzas, pode levar a erros de até 50% nos resultados para o fluxo de calor e para o termo fonte radiativo. / Thermal radiation is the main heat transfer mechanism in phenomena that involves high temperatures, such as in combustion processes. The strongly irregular dependence of the absorption coefficient on the wavenumber makes challenger the study of situations in which the radiation is only part of a more complex problem. The accuracy of the calculation of the radiation is conditioned to the solution of the radiative transfer equation (RTE) by line-by-line (LBL) integration, being frequently impracticable, due to the computational effort required to account for the hundreds of thousands or millions spectral lines of the absorption coefficient. Alternatively, spectral models, such as the weighted-sum-of-gray-gases (WSGG) model, have been used with success to obtain results in comparison to LBL integration. In this study, the WSGG model is applied to solve the radiative heat transfer in a one-dimensional system, formed by two infinite flat parallel plates and filled by a homogeneous mixture of carbon dioxide and water vapor, for different temperature profiles. Unlike most studies of the literature that employ the same geometry, but with black walls, the present work supposes gray and non-gray surfaces. The central objective is, therefore, to evaluate the error in assuming black boundaries when they do not present this behavior. The results for the WSGG model applied to non-gray, gray and black surfaces are compared with the line-by-line solution for non-gray walls. Analyzes of the deviations between the solutions by the weighted-sum-of-gray-gases model and the LBL integration show that the assumption of black walls, for cases where the surfaces should be considered as non-gray, may lead to errors of up to 50% in results for the heat flux and the radiative source term.
9

Geração de novas correlações da soma-ponderada-de-gases-cinza para H2O e CO2 em alta pressão

Coelho, Felipe Ramos January 2017 (has links)
A radiação térmica é frequentemente considerada um mecanismo de transferência de calor muito importante em processos de combustão em alta pressão, devido à presença de meios participantes e às altas temperaturas envolvidas. Resolver a radiação térmica em meios participantes é um problema complexo devido à natureza integro-diferencial da equação governante e à dependência espectral altamente irregular das propriedades de radiação. Atualmente, o método mais preciso para resolver a integração espectral é o método linha-porlinha (LBL), que possui um custo computacional muito elevado. Para contornar essa dificuldade, o problema espectral é geralmente resolvido usando modelos espectrais e, consequentemente, a equação da transferência radiativa (RTE) é simplificada. Um destes modelos é o da soma-ponderada-de-gases-cinza (WSGG), que substitui o comportamento espectral altamente irregular do coeficiente de absorção, por bandas de coeficientes de absorção uniforme e tem mostrado um bom desempenho em diversas aplicações, mesmo sendo um modelo bastante simplificado. Entretanto, recentemente alguns autores não obtiveram bons resultados ao tentar aplicar o WSGG a problemas de combustão em alta pressão. Este artigo desenvolve um modelo WSGG para CO2 e H2O em condições de alta pressão. Para validar o modelo, a emitância total é calculada usando os coeficientes WSGG e comparada à solução do LBL obtida usando o banco de dados espectrais HITEMP 2010. Os resultados mostraram grande convergência entre os valores de emitância de ambos os métodos, mesmo para valores de alta pressão, tanto para o CO2 quanto para H2O, provando que o método WSGG é aplicável a condições de alta pressão. O modelo também foi validado pelo cálculo do fluxo de calor e termo fonte radiativo, e comparando-os com os obtidos através do método LBL. O H2O teve melhores resultados para baixas pressões, enquanto o CO2 apresentou melhores resultados para pressões mais altas. O efeito da pressão total sobre a solução de LBL foi maior para o H2O, o que pode ser um dos motivos pelo qual os desvios foram maiores para os casos de alta pressão. / Thermal radiation is often a very important heat transfer mechanism in high pressure combustion processes due to the presence of participating media and the high temperatures involved. Solving thermal radiation in participating media is a tough problem due to the integro-differential governing equation and the complex spectral dependence of radiation properties. Currently, the most accurate method to solve the spectral integration is the line-byline (LBL) method, which has a very high computational cost. In order to avoid this drawback the spectral problem is usually solved using spectral models, and as a consequence the radiative transfer equation (RTE) is simplified. One of the models is the weighted-sum-ofgray- gases (WSGG) which replaces the highly irregular spectral behavior of the absorption coefficient by bands of uniform absorption coefficients, and has shown great performance a lot of applications even though it is a very simple model. However, recently some authors didn’t have good results when trying to apply the WSGG to high pressure combustion problems. This thesis develops a WSGG model for both CO2 and H2O on high pressure conditions. In order to validate the model the total emittance is calculated using the WSGG coefficients and compared to the LBL solution which was obtained using the HITEMP 2010 spectral emissivity database. The results showed that the emittance values from both methods were very close even for high pressure values for both CO2 and H2O proving that the WSGG method is applicable to high pressure conditions. The model was also validated by calculating the radiative heat flux and source, and comparing them with the LBL method. H2O had better results for low pressures while CO2 had better results for higher pressures. The effect of total pressure on the LBL solution was higher for H2O, which might be the reason why deviations were higher at high pressure values.

Page generated in 0.046 seconds