• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Achieving near-optimal MIMO capacity in a rank-deficient LOS environment

Walkenhorst, Brett T. January 2009 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Ingram, Mary Ann; Committee Member: Durgin, Greg; Committee Member: Kenney, Steve; Committee Member: Landgren, Jack; Committee Member: Li, Ye. Part of the SMARTech Electronic Thesis and Dissertation Collection.
2

Achieving near-optimal MIMO capacity in a rank-deficient LOS environment

Walkenhorst, Brett T. 29 June 2009 (has links)
In the field of wireless multiple-input multiple-output (MIMO) communications, remarkable capacity enhancements may be achieved in certain environments relative to single-antenna systems. In a non-line of sight (NLOS) environment with rich multipath, the capacity potential is typically very good, but in a line of sight (LOS) environment with a high Rician K-factor, the capacity improvement may be severely limited or almost disappear. The objective of the research described in this dissertation has been to develop a more thorough understanding of the capacity limitations of MIMO in a LOS environment and explore methods to improve that capacity. It is known that for a LOS link with a given range, an optimal antenna configuration, which usually involves large antenna spacings, can be computed to maximize the capacity. A method is here proposed for achieving near-maximum MIMO capacity in LOS environments with suboptimal array configurations. Suboptimal arrays may include small antenna spacings and/or arrays rotated off normal. The method employs single-antenna full-duplex, amplify-and-forward relays, otherwise known as "wireless repeaters." We have designated this concept repeater-assisted capacity enhancement (RACE) for MIMO. Potential applications include tower-mounted or building-top cellular backhaul and high-speed wireless bridge links (explored in Chapter 5) and ground-to-air sensor network backhaul links and base-to-mobile links in a cellular configuration (explored in Chapter 7). We have analyzed this concept in simulation for point-to-point and point-to-multipoint links and have found the following critical parameters for system design and deployment: orientation, antenna spacing, and antenna patterns of the transmit (TX)/receive (RX) MIMO arrays; and position, noise figure, TX/RX isolation, and antenna patterns associated with the repeater(s). Simulation results for an n[subscript R] xn[subscript T] MIMO link demonstrate nearly a factor of n=min{n[subscript R], n[subscript T] } improvement in capacity relative to a single-input single-output (SISO) link using n-1 optimally placed wireless repeaters supporting the link. Other portions of analysis presented include the development of a determinant-based metric for capacity (D) and an exploration of upper and lower bounds of capacity as a function of D. The position of repeaters is analyzed theoretically and a metric introduced based on D intended to quickly and intuitively determine optimal positions for repeaters assisting a given MIMO link based on TX/RX node steering vectors.

Page generated in 0.0601 seconds