• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soot mass estimation from electrical capacitance tomography imaging for a diesel particulate filter

Hassan, Salah E. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Electrical capacitance tomography (ECT) method has recently been adapted to obtain tomographic images of the cross section of a diesel particulate filter (DPF). However, a soot mass estimation algorithm is still needed to translate the ECT image pixel data to obtain soot load in the DPF. In this research, we propose an estimation method to quantify the soot load in a DPF through an inverse algorithm that uses the ECT images commonly generated by a back-projection algorithm. The grayscale pixel data generated from ECT is used in a matrix equation to estimate the permittivity distribution of the cross section of the DPF. Since these permittivity data has direct correlation with the soot mass present inside the DPF, a permittivity to soot mass distribution relationship is established first. A numerical estimation algorithm is then developed to compute the soot mass accounting for the mass distribution across the cross-section of the DPF as well as the dimension of the DPF along the exhaust flow direction. Firstly, ANSYS Electronic Desktop software is used to compute the capacitance matrix for different amounts of soot filled in the DPF, furthermore it also analyzed different soot distribution types applied to the DPF. The Analysis helped in constructing the sensitivity matrix which was used in the numerical estimation algorithm. Experimental data have been further used to verify the proposed soot estimation algorithm which compares the estimated values with the actual measured soot mass to validate the performance of the proposed algorithm.
2

Development of a novel sensor for soot deposition measurement in a diesel particulate filter using electrical capacitance tomography

Huq, Ragibul January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This paper presents a novel approach of particulate material (soot) measurement in a Diesel particulate filter using Electrical Capacitance Tomography. Modern Diesel Engines are equipped with Diesel Particulate Filters (DPF), as well as on-board technologies to evaluate the status of DPF because complete knowledge of DPF soot loading is very critical for robust efficient operation of the engine exhaust after treatment system. Emission regulations imposed upon all internal combustion engines including Diesel engines on gaseous as well as particulates (soot) emissions by Environment Regulatory Agencies. In course of time, soot will be deposited inside the DPFs which tend to clog the filter and hence generate a back pressure in the exhaust system, negatively impacting the fuel efficiency. To remove the soot build-up, regeneration of the DPF must be done as an engine exhaust after treatment process at pre-determined time intervals. Passive regeneration use exhaust heat and catalyst to burn the deposited soot but active regeneration use external energy in such as injection of diesel into an upstream DOC to burn the soot. Since the regeneration process consume fuel, a robust and efficient operation based on accurate knowledge of the particulate matter deposit (or soot load)becomes essential in order to keep the fuel consumption at a minimum. In this paper, we propose a sensing method for a DPF that can accurately measure in-situ soot load using Electrical Capacitance Tomography (ECT). Simulation results show that the proposed method offers an effective way to accurately estimate the soot load in DPF. The proposed method is expected to have a profound impact in improving overall PM filtering efficiency (and thereby fuel efficiency), and durability of a Diesel Particulate Filter (DPF) through appropriate closed loop regeneration operation.

Page generated in 0.0987 seconds