• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximate Dynamic Programming and Reinforcement Learning - Algorithms, Analysis and an Application

Lakshminarayanan, Chandrashekar January 2015 (has links) (PDF)
Problems involving optimal sequential making in uncertain dynamic systems arise in domains such as engineering, science and economics. Such problems can often be cast in the framework of Markov Decision Process (MDP). Solving an MDP requires computing the optimal value function and the optimal policy. The idea of dynamic programming (DP) and the Bellman equation (BE) are at the heart of solution methods. The three important exact DP methods are value iteration, policy iteration and linear programming. The exact DP methods compute the optimal value function and the optimal policy. However, the exact DP methods are inadequate in practice because the state space is often large and in practice, one might have to resort to approximate methods that compute sub-optimal policies. Further, in certain cases, the system observations are known only in the form of noisy samples and we need to design algorithms that learn from these samples. In this thesis we study interesting theoretical questions pertaining to approximate and learning algorithms, and also present an interesting application of MDPs in the domain of crowd sourcing. Approximate Dynamic Programming (ADP) methods handle the issue of large state space by computing an approximate value function and/or a sub-optimal policy. In this thesis, we are concerned with conditions that result in provably good policies. Motivated by the limitations of the PBE in the conventional linear algebra, we study the PBE in the (min, +) linear algebra. It is a well known fact that deterministic optimal control problems with cost/reward criterion are (min, +)/(max, +) linear and ADP methods have been developed for such systems in literature. However, it is straightforward to show that infinite horizon discounted reward/cost MDPs are neither (min, +) nor (max, +) linear. We develop novel ADP schemes namely the Approximate Q Iteration (AQI) and Variational Approximate Q Iteration (VAQI), where the approximate solution is a (min, +) linear combination of a set of basis functions whose span constitutes a subsemimodule. We show that the new ADP methods are convergent and we present a bound on the performance of the sub-optimal policy. The Approximate Linear Program (ALP) makes use of linear function approximation (LFA) and offers theoretical performance guarantees. Nevertheless, the ALP is difficult to solve due to the presence of a large number of constraints and in practice, a reduced linear program (RLP) is solved instead. The RLP has a tractable number of constraints sampled from the original constraints of the ALP. Though the RLP is known to perform well in experiments, theoretical guarantees are available only for a specific RLP obtained under idealized assumptions. In this thesis, we generalize the RLP to define a generalized reduced linear program (GRLP) which has a tractable number of constraints that are obtained as positive linear combinations of the original constraints of the ALP. The main contribution here is the novel theoretical framework developed to obtain error bounds for any given GRLP. Reinforcement Learning (RL) algorithms can be viewed as sample trajectory based solution methods for solving MDPs. Typically, RL algorithms that make use of stochastic approximation (SA) are iterative schemes taking small steps towards the desired value at each iteration. Actor-Critic algorithms form an important sub-class of RL algorithms, wherein, the critic is responsible for policy evaluation and the actor is responsible for policy improvement. The actor and critic iterations have deferent step-size schedules, in particular, the step-sizes used by the actor updates have to be generally much smaller than those used by the critic updates. Such SA schemes that use deferent step-size schedules for deferent sets of iterates are known as multitimescale stochastic approximation schemes. One of the most important conditions required to ensure the convergence of the iterates of a multi-timescale SA scheme is that the iterates need to be stable, i.e., they should be uniformly bounded almost surely. However, the conditions that imply the stability of the iterates in a multi-timescale SA scheme have not been well established. In this thesis, we provide veritable conditions that imply stability of two timescale stochastic approximation schemes. As an example, we also demonstrate that the stability of a widely used actor-critic RL algorithm follows from our analysis. Crowd sourcing (crowd) is a new mode of organizing work in multiple groups of smaller chunks of tasks and outsourcing them to a distributed and large group of people in the form of an open call. Recently, crowd sourcing has become a major pool for human intelligence tasks (HITs) such as image labeling, form digitization, natural language processing, machine translation evaluation and user surveys. Large organizations/requesters are increasingly interested in crowd sourcing the HITs generated out of their internal requirements. Task starvation leads to huge variation in the completion times of the tasks posted on to the crowd. This is an issue for frequent requesters desiring predictability in the completion times of tasks specified in terms of percentage of tasks completed within a stipulated amount of time. An important task attribute that affects the completion time of a task is its price. However, a pricing policy that does not take the dynamics of the crowd into account might fail to achieve the desired predictability in completion times. Here, we make use of the MDP framework to compute a pricing policy that achieves predictable completion times in simulations as well as real world experiments.
2

Online Learning and Simulation Based Algorithms for Stochastic Optimization

Lakshmanan, K January 2012 (has links) (PDF)
In many optimization problems, the relationship between the objective and parameters is not known. The objective function itself may be stochastic such as a long-run average over some random cost samples. In such cases finding the gradient of the objective is not possible. It is in this setting that stochastic approximation algorithms are used. These algorithms use some estimates of the gradient and are stochastic in nature. Amongst gradient estimation techniques, Simultaneous Perturbation Stochastic Approximation (SPSA) and Smoothed Functional(SF) scheme are widely used. In this thesis we have proposed a novel multi-time scale quasi-Newton based smoothed functional (QN-SF) algorithm for unconstrained as well as constrained optimization. The algorithm uses the smoothed functional scheme for estimating the gradient and the quasi-Newton method to solve the optimization problem. The algorithm is shown to converge with probability one. We have also provided here experimental results on the problem of optimal routing in a multi-stage network of queues. Policies like Join the Shortest Queue or Least Work Left assume knowledge of the queue length values that can change rapidly or hard to estimate. If the only information available is the expected end-to-end delay as with our case, such policies cannot be used. The QN-SF based probabilistic routing algorithm uses only the total end-to-end delay for tuning the probabilities. We observe from the experiments that the QN-SF algorithm has better performance than the gradient and Jacobi versions of Newton based smoothed functional algorithms. Next we consider constrained routing in a similar queueing network. We extend the QN-SF algorithm to this case. We study the convergence behavior of the algorithm and observe that the constraints are satisfied at the point of convergence. We provide experimental results for the constrained routing setup as well. Next we study reinforcement learning algorithms which are useful for solving Markov Decision Process(MDP) when the precise information on transition probabilities is not known. When the state, and action sets are very large, it is not possible to store all the state-action tuples. In such cases, function approximators like neural networks have been used. The popular Q-learning algorithm is known to diverge when used with linear function approximation due to the ’off-policy’ problem. Hence developing stable learning algorithms when used with function approximation is an important problem. We present in this thesis a variant of Q-learning with linear function approximation that is based on two-timescale stochastic approximation. The Q-value parameters for a given policy in our algorithm are updated on the slower timescale while the policy parameters themselves are updated on the faster scale. We perform a gradient search in the space of policy parameters. Since the objective function and hence the gradient are not analytically known, we employ the efficient one-simulation simultaneous perturbation stochastic approximation(SPSA) gradient estimates that employ Hadamard matrix based deterministic perturbations. Our algorithm has the advantage that, unlike Q-learning, it does not suffer from high oscillations due to the off-policy problem when using function approximators. Whereas it is difficult to prove convergence of regular Q-learning with linear function approximation because of the off-policy problem, we prove that our algorithm which is on-policy is convergent. Numerical results on a multi-stage stochastic shortest path problem show that our algorithm exhibits significantly better performance and is more robust as compared to Q-learning. Future work would be to compare it with other policy-based reinforcement learning algorithms. Finally, we develop an online actor-critic reinforcement learning algorithm with function approximation for a problem of control under inequality constraints. We consider the long-run average cost Markov decision process(MDP) framework in which both the objective and the constraint functions are suitable policy-dependent long-run averages of certain sample path functions. The Lagrange multiplier method is used to handle the inequality constraints. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal solution. We also provide the results of numerical experiments on a problem of routing in a multistage queueing network with constraints on long-run average queue lengths. We observe that our algorithm exhibits good performance on this setting and converges to a feasible point.

Page generated in 0.1368 seconds