Spelling suggestions: "subject:"1inear accelerator inn medicine"" "subject:"1inear accelerator iin medicine""
1 |
The development of a new measure of linear accelerator throughput in radiation oncology treatment delivery : the basic treatment equivalent (B.T.E.) /Delaney, G. P. January 2001 (has links)
Thesis (M.D.)--University of New South Wales, 2001. / Also available online.
|
2 |
The Development of a New Measure of Linear Accelerator Throughput in Radiation Oncology Treatment Delivery - The Basic Treatment Equivalent (B.T.E.).Delaney, Geoffrey Paul, SWSAHS Clinical School, UNSW January 2001 (has links)
The measurement of productivity in health care is difficult. Studies in various specialty disciplines of medicine have identified that the variation in complexities (casemix) between departments or hospitals will vary and therefore will affect any basic productivity statistics that are produced. Radiation oncology is a discipline of medicine where no such studies into radiotherapy casemix variations and the effect that these may have on productivity measures have been performed, despite the high capital expenditure involved in the delivery of radiotherapy. Radiation oncology productivity on linear accelerators is currently measured by the number of patients treated or number of treatment fields treated per unit time (usually per hour). These statistics have been collected for many years and productivity assessments were made on the variations in these statistics that exist between departments. However, these statistics do not consider the variations in casemix that occur between departments. These complexity differences may be quite marked and therefore may strongly influence the ability of a department to achieve a high patient or treatment field throughput. This may be seen as 'reduced productivity' with no consideration of the complexity of the caseload seen in the department. In addition, future technological changes that improve patient outcome may be introduced. These changes may make treatment more complex. Using older measures of productivity such as fields per hour or patients per hour will not consider these technological changes and the subsequent changes in complexity and hence departments may be seen as less productive in the future using current methods of analysis unless a more valid measure of productivity that considers complexity variations is introduced. There have only been 3 previous attempts at developing measures of linear accelerator productivity. Each of these models have been developed empirically and have not been clinically validated. No previous attempts have been made in determining a scientifically-derived complexity model that considers the variations in treatment technique. This thesis describes research performed between 1995 and 2001. This research study???s primary aims were to study the factors that affect radiotherapy treatment time and treatment complexity and to develop a model of linear accelerator productivity that does consider complexity variations in radiotherapy treatment delivery. This model is called the Basic Treatment Equivalent (B.T.E.). This series of trials examines the old models of linear accelerator productivity, describes the derivation and validation of the BTE model both in Australasia and the United Kingdom, identifies the factors that contribute to treatment time and treatment complexity, describes the development of a pilot model of productivity of gynaecological brachytherapy and outpatient chemotherapy using similar BTE methodology, discusses the potential uses of the BTE model, recent independent reviews of BTE by other groups, and the advantages and disadvantages of using such a model. This research has shown that it is possible to identify the various factors that contribute to treatment time and treatment complexity and to derive a model of linear accelerator productivity that considers the variations in complexity. The BTE model has been clinically validated in Australia, New Zealand and a couple of departments in the United Kingdom and Canada and has been adopted as a new measure by various groups. It requires regular updating to maintain currency particularly as there are frequent improvements in radiation treatment technology. Future studies should identify the differences these technological enhancements make to productivity. The BTE derived from outpatient chemotherapy delivery and gynaecological brachytherapy delivery shows promise although these models require further research with the assistance of other departments.
|
3 |
The Development of a New Measure of Linear Accelerator Throughput in Radiation Oncology Treatment Delivery - The Basic Treatment Equivalent (B.T.E.).Delaney, Geoffrey Paul, SWSAHS Clinical School, UNSW January 2001 (has links)
The measurement of productivity in health care is difficult. Studies in various specialty disciplines of medicine have identified that the variation in complexities (casemix) between departments or hospitals will vary and therefore will affect any basic productivity statistics that are produced. Radiation oncology is a discipline of medicine where no such studies into radiotherapy casemix variations and the effect that these may have on productivity measures have been performed, despite the high capital expenditure involved in the delivery of radiotherapy. Radiation oncology productivity on linear accelerators is currently measured by the number of patients treated or number of treatment fields treated per unit time (usually per hour). These statistics have been collected for many years and productivity assessments were made on the variations in these statistics that exist between departments. However, these statistics do not consider the variations in casemix that occur between departments. These complexity differences may be quite marked and therefore may strongly influence the ability of a department to achieve a high patient or treatment field throughput. This may be seen as 'reduced productivity' with no consideration of the complexity of the caseload seen in the department. In addition, future technological changes that improve patient outcome may be introduced. These changes may make treatment more complex. Using older measures of productivity such as fields per hour or patients per hour will not consider these technological changes and the subsequent changes in complexity and hence departments may be seen as less productive in the future using current methods of analysis unless a more valid measure of productivity that considers complexity variations is introduced. There have only been 3 previous attempts at developing measures of linear accelerator productivity. Each of these models have been developed empirically and have not been clinically validated. No previous attempts have been made in determining a scientifically-derived complexity model that considers the variations in treatment technique. This thesis describes research performed between 1995 and 2001. This research study???s primary aims were to study the factors that affect radiotherapy treatment time and treatment complexity and to develop a model of linear accelerator productivity that does consider complexity variations in radiotherapy treatment delivery. This model is called the Basic Treatment Equivalent (B.T.E.). This series of trials examines the old models of linear accelerator productivity, describes the derivation and validation of the BTE model both in Australasia and the United Kingdom, identifies the factors that contribute to treatment time and treatment complexity, describes the development of a pilot model of productivity of gynaecological brachytherapy and outpatient chemotherapy using similar BTE methodology, discusses the potential uses of the BTE model, recent independent reviews of BTE by other groups, and the advantages and disadvantages of using such a model. This research has shown that it is possible to identify the various factors that contribute to treatment time and treatment complexity and to derive a model of linear accelerator productivity that considers the variations in complexity. The BTE model has been clinically validated in Australia, New Zealand and a couple of departments in the United Kingdom and Canada and has been adopted as a new measure by various groups. It requires regular updating to maintain currency particularly as there are frequent improvements in radiation treatment technology. Future studies should identify the differences these technological enhancements make to productivity. The BTE derived from outpatient chemotherapy delivery and gynaecological brachytherapy delivery shows promise although these models require further research with the assistance of other departments.
|
4 |
New method of collecting output factors for commissioming linear accelerators with special emphasis on small fields and intensity modualted readiation therapyUnknown Date (has links)
Common methods for commissioning linear accelerators often neglect beam data for small fields. Examining the methods of beam data collection and modeling for commissioning linear accelerators revealed little to no discussion of the protocols for fields smaller than 4 cm x 4 cm. This leads to decreased confidence levels in the dose calculations and associated monitor units (MUs) for Intensity Modulated Radiation Therapy (IMRT).
The parameters of commissioning the Novalis linear accelerator (linac) on the Eclipse Treatment Planning System (TPS) led to the study of challenges collecting data for very small fields. The focus of this thesis is the examination of the protocols for output factor collection and their impact on dose calculations by the TPS for IMRT treatment plans. Improving output factor collection methods, led to significant improvement in absolute dose calculations which correlated with the complexity of the plans. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
|
5 |
An investigation into EPID flood fields independent from the linear accelerator beam : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Medical Physics in the University of Canterbury, New Zealand /Satory, Philip. January 1900 (has links)
Thesis (M. Sc.)--University of Canterbury, 2008. / Typescript (photocopy). "Year 2006-2008"--P. i. Includes bibliographical references (p. 122-123). Also available via the World Wide Web.
|
Page generated in 0.1131 seconds