• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mechanické vlastnosti a struktura směsí recyklovaného polyetylénu a velmi nízko hustotního polyetylénu / Mechanical properties and structure of blends of recycled polyethylene with linear low density polyethylene

Kocandová, Jana January 2019 (has links)
Recycled material produced during three months from packing polyethylene foils coming from three suppliers was analysed together with one recycled material under complaint from the point of melt flow index (MFI), composition and mechanical properties. The addition of linear low density polyethylene (LLDPE) into the recycled material was studied as well. It was measured melt flow index (MFI), Differential scanning calorimetry (DSC) together with Thermogravimetry methods were used to determine composition. Selected materials were pressed to obtain films with the thickness of 1 mm to determine tensile properties. Recycled materials contained 40–65% LLDPE, small amount of polypropylene as well as chalk. The content of LDPE and LLDPE varied within one supplier and thus mechanical properties did. The results showed the difference in quality of PE films separation among all suppliers. The problems with workability of material under complaint were caused by the material composition – the amount of LLDPE predominated. The addition of LLDPE into the recycled material in the range of 5–20 % increased MFI by 13-78%. Mechanical properties of blends rich in LLDPE were similar to those of clear LLDPE. The presence of LDPE influenced more markedly only the strength to break. The blends of LDPE and LLDPE were evaluated as immiscible but with high affinity of the components with increasing contend of LLDPE. No material was chemically degraded. The methods commonly performed in manufacture, especially MFI, are not able to differentiate LDPE form LLDPE – recommended is DSC.
12

Thermomechanical and rheological properties of investment casting patterns

Tewo, Robert Kimutai 02 October 2019 (has links)
Ph. D. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / Investment casting process is the most suitable technique for producing high quality castings which are dimensionally accurate with excellent surface finish and complex in nature. Recently with the ever-changing manufacturing landscape, the process has been increasingly used to produce components for the medical, aerospace and sports industry. The present study looked at three investigative scenarios in the development of a pattern material for investment casting process: (i) the development of wax/ethyl vinyl acetate (EVA) and wax/linear low-density polyethylene (LLDPE) blends as the carrier vehicle materials for the development of pattern material for investment casting; (ii) the development of wax/EVA/polymethyl methacrylate (PMMA) based investment casting pattern and lastly (iii) the development of wax/LLDPE/PMMA based investment casting pattern material. The first part of the studies elucidates the effects in terms of the thermal, mechanical, surface and rheological properties when paraffin wax in blended with poly EVA and LLDPE. The developments involved the extrusion of seven formulations for EVA and also LLDPE using a twin-screw extrusion compounder. The paraffin wax weight percent investigated ranged from 33% to 87% thus encompassing both low and high wax loading ratios. The thermal properties of the developed binary blends were characterized via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The mechanical properties were characterized using three-point bending test. The thermo-mechanical and rheological properties were determined using thermomechanical analysis (TMA) and a rheometer respectively. A scanning electron microscope (SEM) was used to study the surface texture of the extruded blends. The thermal properties indicated that the thermal stability of paraffin wax is improved when it is blended with both EVA and LLDPE. DSC curves showed two endothermic melting peaks and two exothermic crystallisation peaks. In the case of wax/EVA blends, there was no distinct peak showing the independent melting of neat wax and EVA. The peak at a temperature of 50 – 72 °C corresponds to the melting of the wax/EVA blend. In the case of wax/LLDPE blends, the peak at 50 -66 °C corresponds to the melting of wax whereas the large peak at 112 - 125°C corresponds to the melting of the LLDPE. Wax/EVA and wax/LLDPE had improved mechanical properties as compared to that of neat wax. The rheological properties of both the EVA based and LLDPE based blends indicated that the viscosity of the blends increased as compared to that of neat wax. SEM confirmed that EVA alters the wax crystal habit at higher concentrations. In the case of wax/LLDPE blends, at 20-30 % wax content, a heterogeneous surface was observed, indicating the immiscibility of the paraffin wax within the LLDPE matrix. At a high wax content, there was agglomeration of wax. LLDPE allows amorphous structure of wax to disperse easily between the chains. The second part of the studies focussed on the wax/EVA filled with poly (methyl methacrylate) (PMMA) microbeads. TGA behaviour on the pyrolysis of wax/EVA/PMMA showed that the compounds volatilise readily with virtually no residue remaining above 500 °C. The DSC curves indicated that, the incorporation of PMMA reduced the crystallinity of wax/EVA blend. A distinct endothermic peak and another small peak was observed in all the formulations. The mechanical properties of wax/EVA/PMMA improved significantly. The methylene group present in both wax and EVA combined to form a blend with enhanced mechanical properties whereas the PMMA microbeads improved the needle penetration hardness. The melt viscosity of wax/EVA/PMMA increased as the EVA and/or the PMMA content is increased. The rheological experimental data fitted with the data predicted using the modified Krieger and Dougherty expression. The maximum attainable volume fraction of suspended PMMA particles was at max = 0.81. The SEM micrograph of wax/EVA/PMMA revealed a near perfect spherical nature for the filler particles in the wax/EVA polymer matrix. It further shows that the PMMA microbeads were weakly bonded and well distributed in the wax/EVA matrix. The third part of the studies focussed on the wax/LLDPE filled with Poly (methyl methacrylate) (PMMA) microbeads. The incorporation of LLDPE and PMMA into paraffin wax had a strong influence on the thermal properties, tensile properties, flow properties and its morphology. The TGA analysis showed that there was a slight observable decrease in the melting onset temperatures when the wax content was increased. From the DSC curves, the corresponding values of onset temperatures observed are between melting and crystallization temperature of neat paraffin wax and neat LLDPE. The short chains of the paraffin wax and the fragments formed by scission of wax chain have sufficient energy to escape from the matrix at lower temperatures. The slight decrease in peak temperatures associated with melting and crystallization could be attributed to the decrease in the average lamellar thickness of the blends. The tensile properties by three-point bending tests indicated an increase in the stress with an increase in the LLDPE content. This can be attributed to the formation of paraffin wax crystals in the amorphous phase of the blend which may influence the chain mobility. Since the paraffin wax used for this study had a low viscosity as compared to LLDPE, both LLDPE or PMMA had an influence on the viscosities of the blends. The data obtained from the experiments fitted with the data predicted obtained from the modified Krieger and Dougherty expression. The maximum attainable volume fraction of suspended PMMA particles was at max = 0.74. Similar observation with that of wax/EVA/PMMA was made in terms of the morphology of the wax/LLDPE/PMMA blends. The excellent thermal stabilities, the superior mechanical strength of wax/EVA/PMMA and wax/LLDPE/PMMA and the flow properties with relatively high EVA and also with high PMMA loadings, open new opportunities for EVA and LLDPE based pattern material for in investment casting process. It is worth pursuing further comprehensive studies since it offers a strong potential for realizing further technological improvement in the field of investment casting and rapid prototyping technologies.
13

Preparation and characterization of polyethylene based nanocomposites for potential applications in packaging

Gill, Yasir Q. January 2015 (has links)
The objective of my work was to develop HDPE clay nanocomposites for packaging with superior barrier (gas and water) properties by economical processing technique. This work also represents a comparative study of thermoplastic nanocomposites for packaging based on linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and Nylon12. In this study properties and processing of a series of linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and Nylon 12 nanocomposites based on Na-MMT clay and two different aspect ratio grades of kaolinite clay are discussed.

Page generated in 0.0696 seconds