Spelling suggestions: "subject:"1inear mixture model"" "subject:"cinear mixture model""
1 |
Hyperspectral Image Visualization Using Double And Multiple LayersCai, Shangshu 02 May 2009 (has links)
This dissertation develops new approaches for hyperspectral image visualization. Double and multiple layers are proposed to effectively convey the abundant information contained in the original high-dimensional data for practical decision-making support. The contributions of this dissertation are as follows. 1.Development of new visualization algorithms for hyperspectral imagery. Double-layer technique can display mixed pixel composition and global material distribution simultaneously. The pie-chart layer, taking advantage of the properties of non-negativity and sum-to-one abundances from linear mixture analysis of hyperspectral pixels, can be fully integrated with the background layer. Such a synergy enhances the presentation at both macro and micro scales. 2.Design of an effective visual exploration tool. The developed visualization techniques are implemented in a visualization system, which can automatically preprocess and visualize hyperspectral imagery. The interactive tool with a userriendly interface will enable viewers to display an image with any desired level of details. 3.Design of effective user studies to validate and improve visualization methods. The double-layer technique is evaluated by well designed user studies. The traditional approaches, including gray-scale side-by-side classification maps, color hard classification maps, and color soft classification maps, are compared with the proposed double-layer technique. The results of the user studies indicate that the double-layer algorithm provides the best performance in displaying mixed pixel composition in several aspects and that it has the competitive capability of displaying the global material distribution. Based on these results, a multi-layer algorithm is proposed to improve global information display.
|
2 |
Uma abordagem fuzzy na detecção automática de mudanças do uso do solo usando imagens de fração e de informações de contexto espacial / A fuzzy approach to land use automatic change detection using fraction images and spatial context informationZanotta, Daniel Capella January 2010 (has links)
Nesta dissertação está proposta uma metodologia para fins de detecção de mudanças do uso do solo em imagens multitemporais de sensoriamento remoto. Em lugar de classificar os pixels de imagens que cobrem uma cena, em duas classes exaustivas e mutuamente excludentes (mudança, não-mudança), propõe-se adotar uma abordagem do tipo fuzzy, na qual são estimados os graus de pertinência às classes mudança e não-mudança. Com este objetivo adota-se aqui uma abordagem em nível de sub-pixel na estimação dos graus de pertinência para cada pixel. Esta abordagem se mostra mais adequada para fins de modelagem do que ocorre em cenas naturais, onde as alterações que acontecem ao longo de um período de tempo tendem a apresentar uma variação contínua em lugar de discreta. Em uma segunda etapa, os graus de pertinência estimados recebem um ajustamento adicional por meio da introdução de informações de contexto espacial. A metodologia proposta foi testada por meio de três experimentos, um empregando uma imagem sintética e dois utilizando imagens reais. A partir da análise quantitativa dos resultados e comparação com estudos semelhantes, comprova-se a adequação da metodologia proposta. / In this dissertation it is proposed a new methodology to land use change detection in remote sensing multitemporal image data. Rather than applying a rigid labeling of the pixels in the image data into two classes (change, no-change), we propose estimating the degrees of membership to classes change and no-change in a fuzzy-like fashion. To this end, a sub-pixel approach is implemented to detect the degree of change in every pixel. This methodology aims at modeling natural scenes in a more realistic way, since changes in natural scenes tend to occur in a continuum rather than in a sharp distinctive way. In a second step, the estimated values for the degrees of membership are further refined by means of spatial context information. Three experiments were performed to test the proposed methodology, one employing synthetic data and two using real image data. From the quantitative analysis of the results and from similar studies we can prove the adequacy of the proposed methodology.
|
3 |
Uma abordagem fuzzy na detecção automática de mudanças do uso do solo usando imagens de fração e de informações de contexto espacial / A fuzzy approach to land use automatic change detection using fraction images and spatial context informationZanotta, Daniel Capella January 2010 (has links)
Nesta dissertação está proposta uma metodologia para fins de detecção de mudanças do uso do solo em imagens multitemporais de sensoriamento remoto. Em lugar de classificar os pixels de imagens que cobrem uma cena, em duas classes exaustivas e mutuamente excludentes (mudança, não-mudança), propõe-se adotar uma abordagem do tipo fuzzy, na qual são estimados os graus de pertinência às classes mudança e não-mudança. Com este objetivo adota-se aqui uma abordagem em nível de sub-pixel na estimação dos graus de pertinência para cada pixel. Esta abordagem se mostra mais adequada para fins de modelagem do que ocorre em cenas naturais, onde as alterações que acontecem ao longo de um período de tempo tendem a apresentar uma variação contínua em lugar de discreta. Em uma segunda etapa, os graus de pertinência estimados recebem um ajustamento adicional por meio da introdução de informações de contexto espacial. A metodologia proposta foi testada por meio de três experimentos, um empregando uma imagem sintética e dois utilizando imagens reais. A partir da análise quantitativa dos resultados e comparação com estudos semelhantes, comprova-se a adequação da metodologia proposta. / In this dissertation it is proposed a new methodology to land use change detection in remote sensing multitemporal image data. Rather than applying a rigid labeling of the pixels in the image data into two classes (change, no-change), we propose estimating the degrees of membership to classes change and no-change in a fuzzy-like fashion. To this end, a sub-pixel approach is implemented to detect the degree of change in every pixel. This methodology aims at modeling natural scenes in a more realistic way, since changes in natural scenes tend to occur in a continuum rather than in a sharp distinctive way. In a second step, the estimated values for the degrees of membership are further refined by means of spatial context information. Three experiments were performed to test the proposed methodology, one employing synthetic data and two using real image data. From the quantitative analysis of the results and from similar studies we can prove the adequacy of the proposed methodology.
|
4 |
Uma abordagem fuzzy na detecção automática de mudanças do uso do solo usando imagens de fração e de informações de contexto espacial / A fuzzy approach to land use automatic change detection using fraction images and spatial context informationZanotta, Daniel Capella January 2010 (has links)
Nesta dissertação está proposta uma metodologia para fins de detecção de mudanças do uso do solo em imagens multitemporais de sensoriamento remoto. Em lugar de classificar os pixels de imagens que cobrem uma cena, em duas classes exaustivas e mutuamente excludentes (mudança, não-mudança), propõe-se adotar uma abordagem do tipo fuzzy, na qual são estimados os graus de pertinência às classes mudança e não-mudança. Com este objetivo adota-se aqui uma abordagem em nível de sub-pixel na estimação dos graus de pertinência para cada pixel. Esta abordagem se mostra mais adequada para fins de modelagem do que ocorre em cenas naturais, onde as alterações que acontecem ao longo de um período de tempo tendem a apresentar uma variação contínua em lugar de discreta. Em uma segunda etapa, os graus de pertinência estimados recebem um ajustamento adicional por meio da introdução de informações de contexto espacial. A metodologia proposta foi testada por meio de três experimentos, um empregando uma imagem sintética e dois utilizando imagens reais. A partir da análise quantitativa dos resultados e comparação com estudos semelhantes, comprova-se a adequação da metodologia proposta. / In this dissertation it is proposed a new methodology to land use change detection in remote sensing multitemporal image data. Rather than applying a rigid labeling of the pixels in the image data into two classes (change, no-change), we propose estimating the degrees of membership to classes change and no-change in a fuzzy-like fashion. To this end, a sub-pixel approach is implemented to detect the degree of change in every pixel. This methodology aims at modeling natural scenes in a more realistic way, since changes in natural scenes tend to occur in a continuum rather than in a sharp distinctive way. In a second step, the estimated values for the degrees of membership are further refined by means of spatial context information. Three experiments were performed to test the proposed methodology, one employing synthetic data and two using real image data. From the quantitative analysis of the results and from similar studies we can prove the adequacy of the proposed methodology.
|
Page generated in 0.0719 seconds