Spelling suggestions: "subject:"1inear system identification"" "subject:"cinear system identification""
1 |
Dynamic modeling, model-based control, and optimization of solid oxide fuel cellsSpivey, Benjamin James 12 October 2011 (has links)
Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs.
This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs. / text
|
2 |
Identification passive en acoustique : estimateurs et applications au SHM / Passive estimation in acoustics : estimators and applications to SHMVincent, Rémy 08 January 2016 (has links)
L’identité de Ward est une relation qui permet d’identifier unmilieu de propagation linéaire dissipatif, c'est-à-dire d'estimer des paramètres qui le caractérisent. Dans les travaux exposés, cette identité est utilisée pour proposer de nouveaux modèles d’observation caractérisant un contexte d’estimation qualifié de passif : les sources qui excitent le système ne sont pas contrôlées par l’utilisateur. La théorie de l’estimation/détection dans ce contexte est étudiée et des analyses de performances sont menées sur divers estimateurs. La portée applicative des méthodes proposées concerne le domaine du Structural Health Monitoring (SHM), c’est-à-dire le suivi de l’état de santé desbâtiment, des ponts... L'approche est développée pour la modalité acoustique aux fréquences audibles, cette dernière s'avérant complémentaire des techniques de l’état de l’art du SHM et permettant entre autre, d’accéder à des paramètres structuraux et géométriques. Divers scénarios sont illustrés par la mise en oeuvre expérimentale des algorithmes développés et adaptés à des contraintes de calculs embarqués sur un réseau de capteurs autonome. / Ward identity is a relationship that enables damped linear system identification, ie the estimation its caracteristic properties. This identity is used to provide new observation models that are available in an estimation context where sources are uncontrolled by the user. An estimation and detection theory is derived from these models and various performances studies areconducted for several estimators. The reach of the proposed methods is extended to Structural Health Monitoring (SHM), that aims at measuring and tracking the health of buildings, such as a bridge or a sky-scraper for instance. The acoustic modality is chosen as it provides complementary parameters estimation to the state of the art in SHM, such as structural and geometrical parameters recovery. Some scenarios are experimentally illustrated by using the developed algorithms, adapted to fit the constrains set by embedded computation on anautonomous sensor network.
|
3 |
[pt] IDENTIFICAÇÃO NÃO LINEAR CAIXA-PRETA DE SISTEMAS PIEZOELÉTRICOS / [en] NONLINEAR BLACK-BOX IDENTIFICATION OF PIEZOELECTRIC SYSTEMSMATHEUS PATRICK SOARES BARBOSA 10 September 2021 (has links)
[pt] Atuadores baseados em materiais piezelétricos apresentam características
ideais para aplicações como transmissão acústica e micromanipulação. No
entanto, não-linearidades inerentes a estes atuadores, como histerese e fluência,
aumentam o desafio de controla-los. Além disso, a crescente necessidade de
atuadores mais precisos e rápidos aliada a frequentes mudanças nas condições
ambientais e operacionais agravam ainda mais o problema. Modelagens analíticas
são específicas ao sistema ao qual foram feitas, o que significa que elas
não são facilmente escalonáveis e eficientes para todos os tipos de sistemas.
Adicionalmente, com o aumento da complexidade, os fenômenos que regem
a física do sistema não são totalmente conhecidos, tornando difícil o desenvolvimento
destes modelos. Este trabalho investiga esses desafios do ponto de
vista da metodologia de identificação de sistemas e modelos baseados em dados
para atuadores piezelétricos. A abordagem de modelagem caixa preta foi
testada com dados experimentais adquiridos em um ambiente de laboratório
para os estudos de caso de micromanipulação e transmissão acústica. Sinais de
uso geral foram empregados como entrada de excitação do sistema de modo a
acelerar a aquisição e estimação dos parâmetros. Parte dos modelos desenvolvidos
foram validados com um conjunto de dados separado. Em ambos os casos
foi necessário pré-processamento para otimização da quantidade de dados. Os
modelos testados incluem a Média Móvel AutoRegressiva com entradas eXógenas
(ARMAX), AutoRegressiva Não Linear com entradas eXógenas (NARX)
com uma estrutura de rede neural artificial e Média Móvel AutoRegressiva Não
Linear com entradas eXógenas (NARMAX). Os resultados mostram uma boa
capacidade de prever as não-linearidades do micro manipulador e, portanto, a
histerese em diferentes frequências de entrada. O sistema de transmissão acústica
foi modelado com sucesso. Embora os resultados mostrem que ainda há
espaço para melhorias, eles fornecem informações importantes sobre possíveis
otimizações para o sistema uma vez que os modelos apresentados são uteis
para janelas de predição curtas. / [en] Actuators based on piezoelectric materials have ideal characteristics for
applications such as acoustic transmission and micromanipulation. However,
the inherent nonlinearities of those actuators, such as hysteresis and creep,
greatly increase the challenge to control such devices. Furthermore, the increasing
need for more precise and faster actuators, allied with frequent changes in
the environmental and operational conditions, further worsens the problem.
Analytical models are application-specific, meaning that they are not easily
and efficiently scalable to all systems. Also, with increased complexity, the
understating of underlying phenomena is not fully documented, making it difficult
to develop such models. This work investigates those challenges from the
perspective of the system identification methodology and data-driven models
for piezoelectric actuators. The black-box approach is tested with experimental
data acquired in a laboratory setting for micromanipulator and acoustic transmission
case studies. In some datasets, general-purpose signals were employed
as the excitation input of the system to accelerate the data acquisition of the
whole system dynamic and estimation process. Additionally, some models were
validated on a separate dataset. In both cases, preprocessing was employed to
optimize the amount of data. The tested models include the AutoRegressive
Moving Average with eXogenous inputs (ARMAX), Nonlinear AutoRegressive
with eXogenous inputs (NARX) with an artificial neural network structure,
and Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX).
The results show a good ability to predict the nonlinearities of the
micromanipulator and, therefore, the hysteresis at different input frequencies.
The acoustic transmission system was successfully modeled. Although the results
show that there is still room for improvements, it provides insights into
possible optimizations for the setup as the models here devised are useful for
short prediction windows.
|
Page generated in 0.1639 seconds