• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust Unconstrained Face Detection and Lip Localization Using Gabor Filters

Hursig, Robert E 01 July 2009 (has links) (PDF)
Automatic speech recognition (ASR) is a well-researched field of study aimed at augmenting the man-machine interface through interpretation of the spoken word. From in-car voice recognition systems to automated telephone directories, automatic speech recognition technology is becoming increasingly abundant in today’s technological world. Nonetheless, traditional audio-only ASR system performance degrades when employed in noisy environments such as moving vehicles. To improve system performance under these conditions, visual speech information can be incorporated into the ASR system, yielding what is known as audio-video speech recognition (AVASR). A majority of AVASR research focuses on lip parameters extraction within controlled environments, but these scenarios fail to meet the demanding requirements of most real-world applications. Within the visual unconstrained environment, AVASR systems must compete with constantly changing lighting conditions and background clutter as well as subject movement in three dimensions. This work proposes a robust still image lip localization algorithm capable of operating in an unconstrained visual environment, serving as a visual front end to AVASR systems. A novel Bhattacharyya-based face detection algorithm is used to compare candidate regions of interest with a unique illumination-dependent face model probability distribution function approximation. Following face detection, a lip-specific Gabor filter-based feature space is utilized to extract facial features and localize lips within the frame. Results indicate a 75% lip localization overall success rate despite the demands of the visually noisy environment.
2

IR-Depth Face Detection and Lip Localization Using Kinect V2

Fong, Katherine Kayan 01 June 2015 (has links) (PDF)
Face recognition and lip localization are two main building blocks in the development of audio visual automatic speech recognition systems (AV-ASR). In many earlier works, face recognition and lip localization were conducted in uniform lighting conditions with simple backgrounds. However, such conditions are seldom the case in real world applications. In this paper, we present an approach to face recognition and lip localization that is invariant to lighting conditions. This is done by employing infrared and depth images captured by the Kinect V2 device. First we present the use of infrared images for face detection. Second, we use the face’s inherent depth information to reduce the search area for the lips by developing a nose point detection. Third, we further reduce the search area by using a depth segmentation algorithm to separate the face from its background. Finally, with the reduced search range, we present a method for lip localization based on depth gradients. Experimental results demonstrated an accuracy of 100% for face detection, and 96% for lip localization.
3

Face Detection and Lip Localization

Husain, Benafsh Nadir 01 August 2011 (has links) (PDF)
Integration of audio and video signals for automatic speech recognition has become an important field of study. The Audio-Visual Speech Recognition (AVSR) system is known to have accuracy higher than audio-only or visual-only system. The research focused on the visual front end and has been centered around lip segmentation. Experiments performed for lip feature extraction were mainly done in constrained environment with controlled background noise. In this thesis we focus our attention to a database collected in the environment of a moving car which hampered the quality of the imagery. We first introduce the concept of illumination compensation, where we try to reduce the dependency of light from over- or under-exposed images. As a precursor to lip segmentation, we focus on a robust face detection technique which reaches an accuracy of 95%. We have detailed and compared three different face detection techniques and found a successful way of concatenating them in order to increase the overall accuracy. One of the detection techniques used was the object detection algorithm proposed by Viola-Jones. We have experimented with different color spaces using the Viola-Jones algorithm and have reached interesting conclusions. Following face detection we implement a lip localization algorithm based on the vertical gradients of hybrid equations of color. Despite the challenging background and image quality, success rate of 88% was achieved for lip segmentation.

Page generated in 0.0824 seconds