• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 916
  • 711
  • 195
  • 135
  • 35
  • 34
  • 32
  • 17
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 4
  • Tagged with
  • 2559
  • 333
  • 286
  • 273
  • 264
  • 193
  • 191
  • 187
  • 180
  • 175
  • 174
  • 172
  • 162
  • 156
  • 147
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Refinement, validation, and application of a charge equilibration force field for simulations of phospholipid bilayers

Davis, Joseph E. January 2009 (has links)
Thesis (M.S.)--University of Delaware, 2009. / Principal faculty advisor: Sandeep Patel, Dept. of Chemistry & Biochemistry. Includes bibliographical references.
122

Epigenetic Regulation of Lipid Metabolism in Neural Stem Cell Fate Decision

Syal, Charvi 16 January 2019 (has links)
Bioactive lipids have emerged as prominent regulators of neural stem and progenitor cell (NPC) function under both physiological and pathological conditions. However, how lipid metabolism is regulated, and its role in modulation of NPC function remains unknown. In this regard, my study defines a novel epigenetic pathway that regulates lipid metabolism to determine NPC proliferation versus differentiation. Specifically, I show that activation of an atypical protein kinase C (aPKC)-mediated Ser436 phosphorylation of CREB binding protein (CBP) by aging, metformin stimulation and continued passaging in vitro, represses expression of monoacylglycerol lipase (Mgll) to promote neuronal differentiation of adult NPCs. Mgll, a lipase that hydrolyzes the endocannabinoid 2-arachidonoyl glycerol (2-AG) to produce arachidonic acid (ARA), is thus a key regulator of two critical bioactive lipid signaling pathways in the brain and a potential modulator of NPC function. I observed elevated Mgll levels, concomitant with neuronal differentiation deficits in both the lateral ventricle sub-ventricular zone (SVZ) and the hippocampal subgranular zone (SGZ) NPCs of phospho-null CBPS436A mice, that lack a functional aPKC-CBP pathway. Genetic knockdown of Mgll or inhibition of Mgll activity rescued these neuronal differentiation deficits. In addition, I found that CBPS436A SVZ NPCs exhibit enhanced proliferation at the expense of differentiation as an outcome of increased Mgll levels in culture. Interestingly, I also observed that SVZ NPCs from an Alzheimer’s disease (AD) model, the 3xTg mice, closely resemble CBPS436A NPC behaviour in culture. 3xTg NPCs exhibit attenuation of the aPKC-CBP pathway, which is associated with elevated Mgll expression and increased NPC proliferation at the expense of neuronal differentiation. Reactivation of the aPKC-CBP mediated-Mgll repression in 3xTg AD NPCs mitigates their differentiation deficits. These findings implicate Mgll as a critical switch that regulates NPC function by altering bioactive lipid signaling (2-AG versus ARA). They demonstrate that the aPKC-CBP mediated Mgll repression is essential for normal NPC function, and that when perturbed in AD, it causes impaired NPC function to generate fewer neurons, contributing to AD predisposition.
123

The role of lipid metabolism in melanoma and identifying therapeutic targets in lipid metabolic pathways

Johnston, Hannah January 2016 (has links)
There have been dramatic advances in melanoma therapy in the last 10 years, yet there is still a demand for effective and affordable therapies. To identify novel therapeutic pathways a transcriptome analysis was performed on zebrafish melanoma models representing the different stages of melanoma progression. Transcriptomic differences between pre-malignant and malignant conditions highlighted lipid metabolism as a potential mediator of progression. A mass spectrometry analysis confirmed multiple changes in lipid composition between wild type fish, pre-malignant and advanced melanoma models. To better investigate metabolism a positron emission tomography (PET) technique was developed in zebrafish. Tumours in the zebrafish were successfully scanned with FDG used to detect human tumours. A novel tracer of unconjugated FA was then developed and, consistent with inferences from the transcriptome and mass spectrometry, was shown to be incorporated into tumours. Demonstrating the feasibility of PET in zebrafish now opens the way to systematic use of this organism in tracer development with potential time-saving and cost benefits. One of the most significantly up-regulated genes exclusive to the malignant state encodes lipoprotein lipase (LPL). LPL is involved in the release and uptake of FA from circulating triglyceride. LPL was found to increase the rate of tumour appearance and tumour growth in a zebrafish tumour assay. LPL was expressed in human tumours and expression correlated with progression. Melanoma cell lines expressed LPL and knocking-down LPL resulted in reduced cell numbers. The effect was most dramatic in WM852 cells. A novel role for LPL in autophagy was identified. WM852 cells treated with LPL siRNA showed a stabilisation of p62/SQSTM and induction of LC3B II. Electron microscopy revealed large autolysosomal vacuoles in the cytoplasm. Additionally many cells showed damaged mitochondria with absent cristae. The dependency of cells on LPL seemed to be modified by the co-expression of fatty acid synthase (FASN) required for de novo FA synthesis, as the magnitude of the effect of LPL-knockdown was dependent on the levels of FASN expressed in melanoma cell lines. Moreover, combining LPL and FASN inhibitors synergised to kill cells previously less sensitive to LPL inhibitor. FASN and LPL co-inhibition could provide a unique combinatorial therapeutic strategy.
124

Free radical mediated mechanisms in stress and development in in vitro crop plant systems

Adams, Linda Kay January 2000 (has links)
Aldehydic lipid peroxidation products, free radical mediated oxidative stress and antioxidant status were investigated in three in vitro plant systems with the objective of exploring the involvement of oxidative stress in plant tissue cultures. <i>Daucus carota</i> was used as a model system for the study of somatic embryogenesis and for the development of an enzyme linked immunosorbant assay (ELISA) technique, for the detection of hydroxynonenal-protein adducts in plant extracts. This study shows for the first time, in plants, that exogenously applied lipid peroxidation products hydroxynonenal (HNE) and malondialdehyde (MDA) inhibit callus proliferation and development (as somatic embryogenesis). Removal of the aldehydes led to a reversal of inhibitory effects. For the first time, HNE and MDA were measured in extracts of callus generated from different explants of <i>Ipomoea batatas</i> (an economically significant crop species). Using ELISA, HNE-protein adducts have been detected, in extracts from all three cultivars of I. batatas tested. Increases in the activities of the antioxidants, catalase and peroxidase were also observed in nodes of <i>I. batatas</i> after transfer to callus induction medium. Three callus cultures of <i>Glycine max</i>, one of which was habituated against benzylamino purine, the second contained chlorophyll (green) and the third, devoid of chlorophyll (white) were profiled for lipid peroxidation products and antioxidant activity. This is first report of the detection free HNE and MDA in <i>G. max</i> and were detected in all three callus types, with the highest concentrations for both aldehydes in the habituated callus line. HNE-protein adducts were only detected in the white callus line of <i>G. max</i>. The level of hydroxyl radical activity was found to be increased in aged callus compared to callus taken from the mid-point of the subculture cycle. Low activities of catalase, peroxidase and other antioxidants were found in the habituated callus. It is proposed that increased amounts of hydroxyl radicals, high levels of HNE and MDA and the low activity of antioxidants leads to oxidative stress in extreme conditions such as habituation in <i>in vitro </i>plant systems. This study has implications regarding the understanding of <i>in vitro</i> plant recalcitrance.
125

Effect of implant surface roughness on the NFkB signalling pathway in macrophages

Ali, Tarek Adel 05 1900 (has links)
Physical stress such as the surface roughness of the implants may activate the NFkB signalling pathway in macrophages. This activation is intimately related to the mechanism(s) by which the macrophage interacts with the surface through serum proteins and/or the formation of membrane rafts. This thesis examines the role of surface topography on activation of the NFkB signalling pathway in macrophages. We examined the effect of implant surface topography on activating the NFkB signalling pathway in the RAW 264.7 macrophage cell line. We also examined the effect surface roughness had on the adhesion of the macrophages using the different media. To finish, we observed the effect the different media and the surface roughness had on the morphology of the macrophages by Scanning Electron Microscopy. Activation of the NFkB pathway was surface topography dependent. The Smooth surface showed the highest level of activation followed by the Etched then the SLA. Addition of suboptimal concentrations of LPS mildly enhanced the response by signalling through the Toll receptor. Activation of NFKB occurred in the absence of fetal calf sera, although to a lesser extent. All three surfaces had very few cells with nuclear translocation at the 5 minutes time point with no significant statistical differences between the surfaces. After 30 minutes, translocation reached comparable levels to those surfaces tested with complete medium. Disruption of the lipid rafts affected the triggering and signalling of the NFkB pathway. This inhibitory effect was concentration and time dependent. Smooth surfaces bound more macrophages in the 30 minutes assay. Fetal calf serum appeared to be very critical for adhesion and spreading of the macrophages on the various surfaces examined. Removal of cholesterol did not affect adhesion or spreading on their respective surfaces. We have clearly demonstrated that the lipid rafts along with surface topography play a role in the activation on NFKB. This in-vitro study has demonstrated that surface topography modulated activation of the NFKB signalling pathway in a time-dependent manner. However, at present, it is unclear through which receptor(s) / surface structure the signal pathway is initiated. / Dentistry, Faculty of / Graduate
126

On the Origin of Secosterols Upon Oxidation of Cholesterol

Zopyrus, Nadia January 2017 (has links)
Cholesterol is one of the most abundant lipids in the body, and like all unsaturated lipids, it can be oxidized by a variety of reactive oxygen species (ROS). Lipid peroxidation is one of the main pathways by which ROS induce oxidative damage, and has been linked to neurodegenerative and cardiovascular diseases. In 2003, Wentworth et al. detected both 3β-hydroxy-5-oxo-5,6-secocholestan-6-al (secosterol-A) and its intramolecular aldolization product 3β-hydroxy-5β-hydroxy-B-norcholestane-6β-carboxaldehyde (secosterol-B) in human atherosclerotic plaques – compounds which, at the time, were only known to be formed by cholesterol ozonolysis. However, our group has shown that cholesterol 5α-hydroperoxide, which is the product of the reaction of cholesterol with singlet oxygen, can undergo acid-catalyzed Hock fragmentation to generate secosterol-A and -B as well. Nevertheless, cholesterol 5α-hydroperoxide readily rearranges to a more thermodynamically stable cholesterol 7-hydroperoxide. Herein we show that cholesterol 7-hydroperoxide, the main product of cholesterol autoxidation, can also undergo acid-catalyzed Hock fragmentation that gives rise to electrophilic species with similar chromatographic characteristics to those that were allegedly identified as secosterol-A and -B. We also proposed to prepare authentic products of the Hock fragmentation of cholesterol 7-hydroperoxide by subjecting Δ⁶’⁷-cholesterol to ozonolysis. Herein, we explore the limitations and complications of Δ⁶’⁷-cholesterol ozonolysis as well as cholesterol 7-OOH Hock fragmentation which both resulted in unexpected (unprecedented) products.
127

Targeting of voltage-gated calcium channels to lipid rafts : the role of auxiliary alpha2/delta-1 subunits

Robinson, Philip January 2011 (has links)
Ca2+ entry through voltage-gated calcium channels (CaVs) triggers a range of physiological events, including synaptic neurotransmission and muscular excito-contraction coupling. CaVs are often localised to discrete membrane microdomains and are required to be targeted to such fine structures in order to perform their cellular functions. CaVs are multi-subunit protein complexes that consist of a core, pore-forming α1 subunit and auxiliary β and α2/δ subunits. The α2/δ subunit is required for the optimal cell surface expression and function of CaVs and is itself localised to cholesterol-rich membrane microdomains called lipid rafts. What is unclear is whether the α2/δ subunit is required for whole CaV complexes to be localised to lipid rafts and what effects lipid raft association has on the cell surface distribution and function of CaVs. By a combination of cellular imaging, biochemistry and electrophysiology, this project shows that the auxiliary α2/δ-1 subunit is both necessary and sufficient to target CaV2.2 to lipid rafts in the COS-7 cell heterologous expression system (Robinson et al, 2010). In addition, α2/δ is localised at the cell surface in discrete puncta and co-localises with two endogenous lipid raft resident proteins, caveolin and flotillin-1. While the punctate cell surface distribution of α2/δ is co-incident with that of caveolin and flotillin-1, its distribution is not dependent on cellular cholesterol, but rather the integrity of the actin cytoskeleton. Additional structure-function analysis by employment of the pIN-α2/δ series of deletion and substitution mutants has shown that the association of α2/δ with lipid rafts is bestowed by an extracellular region of the delta peptide, contrary to other evidence supporting the notion that α2/δ may be a GPI-anchored protein. The exact physiological and functional significance of α2/δ and CaV association with lipid rafts remains poorly understood, but the fact that CaVs are enriched within these fine structures provides a potential mechanism for targeting and access to lipid raft associated signalling pathways.
128

Placental Transfer of Nutrients During Gestation in the Viviparous Lizard, Pseudemoia spenceri

Thompson, M. B., Stewart, J. R., Speake, B. K., Russell, K. J., McCartney, R. J. 01 July 1999 (has links)
Energy, ionic, protein and lipid contents and fatty acid profiles for the major lipid classes of freshly ovulated eggs and neonates of the viviparous lizard, Pseudemoia spenceri, were measured. Litter size is 1.7 ± 0.1, with larger females producing larger neonates. Placentotrophy results in approximately 23% more dry matter in the neonates than in the fresh egg. The increase in the quantity of protein and lipid during development is not significant and is reflected in the similarity of energy densities of eggs and neonates. As a percentage of dry matter, neonates have slightly lower proportions of lipid and protein than eggs because of significant uptake of ash, calcium, potassium and sodium, but not of magnesium, across the placenta. The amounts of triacylglycerol and phospholipid are not significantly different between the egg and the neonate, but neonates contain significantly more cholesterol and cholesteryl ester. The amounts of the major fatty acids, palmitic and oleic acids, recovered from the total lipids of the neonate do not differ significantly from the amounts present in the egg lipids, but the neonates contain significantly less linoleic and α-linolenic acids and more palmitoleic, stearic and arachidonic acids than the eggs. The amount of docosahexaenoic acid recovered from the lipids of the neonate is 2.6-times greater than the amount initially present in the egg. P. spenceri has a relatively larger egg and a smaller reliance on placentotrophy than other species in the same genus, all of which have a similar placental morphology. Nevertheless, the pattern of embryonic nutrition includes both obligative and facultative placentotrophy. All the major components of yolk of oviparous species are present in eggs of P. spenceri, but most are augmented during development by placental transfer.
129

Oxidative Stress as a Precursor to the Irreversible Hepatocellular Injury Caused by Hyperthermia

Skibba, J. L., Powers, R. H., Stadnicka, A., Cullinane, D. W., Almagro, U. A., Kalbfleisch, J. H. 01 January 1991 (has links)
Heat-induced hepatotoxicity accompanying hyperthermic liver perfusion was studied in the isolated, haemoglobin-free perfused rat liver. Trypan blue uptake, a sensitive indicator of cell death, was used to examine the relationship between the efflux of oxidized glutathione (oxidative stress), the appearance of cytosolic enzymes in the perfusate and cell death. Livers were perfused at 37, 42, 42.5 and 43°C. The efflux of total glutathione (GSH) and oxidized glutathione (GSSG) increased with time and temperature. Differences between temperature groups were significant for both parameters for 37 versus 42, 42.5 and 43°C (p < 0.05). Temperature-related differences in GSH levels appeared at 15 min for 37 versus 42 °C and in GSSG levels at 30 min for 37 versus 42 and 42.5°C. Biliary excretion of total GSH increased from 72 nmol at 37°C to 144 nmol at 42°C, 160 nmol at 42.5°C and 124 nmol at 43°C, which was significant for 37 versus 42 and 42.5°C (p < 0.05). The release of allantoin into the perfusate, a measure of purine catabolism and flux through xanthine oxidase, was increased at 42, 42.5 and 43°C compared to 37°C (p < 0.05). Liver injury was assessed by measuring the release of asportate aminotransferase (AST) and lactate dehydrogenase (LDH) and uptake of trypan blue after perfusion at each temperature. There was a pronounced release of LDH and AST into the perfusate after 60 min of perfusion at 42, 42.5 and 43°C, the levels of which were significantly different from the 37°C mean level. There was no uptake of trypan blue after 60 min perfusion at 37°C. Perfusion at 42, 42.5 and 43°C resulted in the uptake of trypan blue in the pericentral areas, but the dye uptake was significant (p < 0.05) compared to 37°C at 42.5 and 43°C only. These data show that heat-induced pericentral cell death is minimal after 60 min at 42-43°C, and that the biochemical processes which occurred during this period suggest 'oxidative stress' as a causative factor in hyperthermic hepatotoxicity. In addition, this liver toxicity is probably related to xanthine oxidase activity or the depletion of GSH as the initiating event which leads to lipid peroxidation and cellular damage.
130

Placental Nutrition in a Viviparous Lizard (Pseudemoia pagenstecheri) With a Complex Placenta

Thompson, Michael B., Stewart, James R., Speake, Brian K., Russell, Kylie J., McCartney, Ruth J., Surai, Peter F. 01 July 1999 (has links)
The composition of egg yolks and neonates of the viviparous lizard, Pseudemoia pagenstecheri, one of the most placentotrophic reptiles studied to date, are described. Neonates (43.3 ±5.2 mg) have twice the dry mass of the initial eggs (22.0 ±1.9 mg). The protein content of neonates (29.1 ±1.1 mg) is more than twice that of eggs (12.2 ±1.1 mg), while the energy content (908.1 ±107.4 J) is 1.6 times higher than that of the egg (565.0 ±42.9 J). The energy densities of eggs (27.5 kJ g-1) and neonates (23.1 ±0.3 kJ g-1) are similar to the energy densities of eggs and neonates of oviparous species. The total ash per neonate (4.1 ±0.4 mg) is three times greater than that of the egg contents (1.4 ±0.2). Neonates contain significantly more calcium, sodium and potassium, but not magnesium, than do eggs. Thus, the placenta has a quantitatively important role in supplying nutrients for the embryo. The proportions of triacylglycerol (66%), phospholipid (19%), and free cholesterol (5%) in the eggs are similar to those in eggs of birds and crocodilians, but the proportion of cholesteryl esters (7%) is much higher in eggs of P. pagenstecheri. The proportion of docosahexaenoic acid in the egg phospholipid is relatively low (1.4%) but rises to 5.4% in the neonate. The eggs contain vitamin E (mainly in the form of α-tocopherol) and vitamin A, but no detectable carotenoids. The overall composition of the eggs is not substantially different from that of oviparous species, suggesting that the small egg size relative to neonate size is a result of a reduction in egg size rather than modification by omission of some nutrients from the yolk. The pattern of placental nutrient provision of P. pagenstecheri contains both an obligate and a facultative component suggesting that enhancement of offspring quality through facultative placentotrophy is a general characteristic of placental reptiles independent of pattern of embryonic nutrient provision.

Page generated in 0.0701 seconds