Spelling suggestions: "subject:"lipid synthesis"" "subject:"iipid synthesis""
1 |
The synthesis and utilization of very long chain fatty acids by developing seeds of nasturtium and other oilseedsWhitfield, Helen V. January 1992 (has links)
No description available.
|
2 |
Lipids and follicular functionHamilton, Richard Phillip January 1979 (has links)
vii, 203 leaves : tables, graphs ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.1980) from the Dept. of Obstetrics and Gynaecology, University of Adelaide
|
3 |
Characterising a role for acetyl-coenzyme A synthetase 2 in the regulation of autophagyAzad, Arsalan Afzal January 2018 (has links)
The important role of the central intermediary metabolite acetyl-coenzyme A (AcCoA)for several anabolic and catabolic pathways is well characterised. However, the role of AcCoA as the only known donor of acetyl groups for protein acetylation in regulation of enzyme activities, protein complex stability as well as epigenetic status off chromatin, is only recently emerging. Among multiple other pathways, the autophagy pathway has now been shown to be directly regulated by protein acetylation and deacetylation. Therefore, it was reasoned that the availability of AcCoA, via the modulation of AcCoA generating enzymes, may regulate autophagy. This study has focussed on the role of the acetate-mediated route to nuclear-cytosolic AcCoA synthesis, catalysed by AcCoA synthetase 2 (ACSS2), in the regulation of autophagy.
|
4 |
On connections between Metazoan cellular metabolism and cell sizeMiettinen, Teemu P. January 2015 (has links)
All animal cells maintain cell size homeostasis, where cell growth (increase in size) is balanced with proliferation (reduction in size via cell division). Yet, different cell types have different sizes and there are physiologically relevant situations where animal cells undergo major cell size changes. So how is cell size regulated? And why is cell size regulated? Are there specific cellular processes that have different functionality in different sized cells? This thesis investigates these questions from the perspective of cellular metabolism. Using a Cyclin dependent kinase 1 knockout mouse model with different degrees of hepatocytes enlargement, gene expression levels were correlated with cell size in vivo. This revealed that the relative expression of mitochondrial and lipid biosynthesis genes are downregulated with increasing cell size. However, mitochondrial content of the liver samples was not decreased, suggesting that cell functions and cell contents scale differently with cell size. To better investigate how mitochondrial functions scale with cell size in non-mutant cells, a novel and high throughput flow cytometry based single-cell analysis method called CoSRA was developed. Using fluorescence mitochondrial probes CoSRA revealed that, while mitochondrial content increases linearly with cell size, mitochondrial membrane potential is decreased in the very smallest and the largest cells. These effects were independent of cell cycle and all animal cell types examined displayed similar effects. Similar nonlinearity was observed in mitochondrial respiration. Furthermore, cell-to-cell variability in mitochondrial membrane potential was minimised in cells which are close to the median cell size of the whole population. The cell size dependence of mitochondrial functions was regulated by mitochondrial dynamics. It was also investigated if mitochondrial functions or lipid biosynthesis are capable of regulating cell size in human cell culture models. Various mitochondrial inhibitions increased cell size by reducing proliferation. Similar results were seen with inhibitions on lipid biosynthesis and especially with inhibitions of mevalonate pathway. Systematic dissection of the mevalonate pathway revealed that protein geranylgeranylation is required for maintaining normal cell size and proliferation ratio. Geranylgeranylation of the recycling endosome regulating protein RAB11 was identified to be at least partially responsible for the cell size regulation by the mevalonate pathway. Furthermore, the link from the mevalonate pathway to RAB11 was found to regulate basal autophagic flux, thus providing a novel connection from lipid biosynthesis to other growth regulating processes. In conclusion, this thesis provides evidence for cell size dependent metabolism, where mitochondrial functions do not increase linearly with cell size. This provides conceptual insights into organelle scaling with cell size and a potential mechanism for maintenance of cell size homeostasis. In addition, mitochondria and lipid synthesis are identified as critical processes for normal cell size homeostasis.
|
5 |
Die Rolle der DGDG Synthase DGD1 bei der Galaktolipid Synthese in den Hüllmembranen von Chloroplasten / The role of DGDG synthase DGD1 in galactolipid synthesis in the envelopes of chloroplastsWitt, Sandra January 2009 (has links)
In den Chloroplasten von höheren Pflanzen sind die Galaktolipide Monogalaktosyldiacylglycerol (MGDG) und Digalaktosyldiacylglycerol (DGDG) die am weitesten verbreiteten Lipide. In dieser Forschungsarbeit wurde die Funktion der DGDG Synthase DGD1, und insbesondere die Funktion des N-terminalen Bereichs dieses Enzyms in der Modellpflanze Arabidopsis thaliana untersucht. Die Überexpression des N-terminalen Bereichs von DGD1 in WT-Col2 resultierte in einem reduzierten Wachstum, welches sich jedoch von der dgd1-1 Mutante unterschied. Dies legte bereits nahe, dass die Expression von N-DGD1 einen negativen Einfluss auf das Wachstum hat. Durch Studien in einem heterologen E.coli Expressionssystem konnte diese These bestätigt werden. Zellen, die ausschließlich N-DGD1 zusammen mit einer MGD Synthase aus Gurke exprimierten, waren im Wachstum stark beeinträchtigt. Nicht nur der N-terminale Bereich von DGD1, auch der N-terminale Bereich von MGD1 besitzt eine Funktion als Transitpeptid und ist somit ein wichtiger Faktor zur korrekten Lokalisierung des MGD1 Proteins. In dieser Arbeit ist es gelungen, ein Fusionskonstrukt aus N-MGD1 und DGD2 in die dgd1-1 Mutante zu transferieren und damit das reduzierte Wachstum zu komplementieren. Frühere Versuche, ein reduziertes dgd1-1 Wachstum mit DGD2 allein zu komplementieren, scheiterten. Somit gibt dies einen Hinweis darauf, dass N-MGD1 als Transitpeptid fungieren kann.
Bindungsstudien zur Interaktion von DGD1 und N-DGD1 Protein zeigten, dass die polaren Lipide MGDG und DGDG in Wechselwirkung mit dem N-terminalen Bereich von DGD1 treten. Bis zum heutigen Zeitpunkt ist nicht erforscht, wie der Transport von DGDG und MGDG zwischen den Hüllmembranen des Chloroplasten erfolgt. Die in dieser Arbeit angefertigen Bindungsstudien konnten Hinweise darauf geben, dass N-DGD1 als eine Art „Antiporter“ fungiert, um MGDG und DGDG zwischen den Hüllmembranen zu transportieren. Weiterhin wurden Bindungsstudien zur Erforschung von Interaktionen der Glykosyltransferasen DGD1, DGD2, MGD1, MGD2 und MGD3 angefertigt. Dabei wurden Wechselwirkungen zwischen den Glykosyltransferasen DGD1, DGD2 und MGD2 detektiert. Interessant ist, dass Hinweise auf eine Dimerbildung bestimmter Enzyme gefunden wurden, so für DGD1 und MGD2. Ein weiterer Ansatz zur Erforschung von Wechselwirkungen von DGD1 Protein mit bis jetzt unbekannten Proteinen war die Expression von DGD1-StrepIITag und DGD1-CTAPTag Fusionsproteinen in dgd1-1 Mutanten. Es wurden für beide Tags transgene Linien generiert, die im Wachstum komplementiert waren und wildtypähnliche Mengen an DGDG akkumulierten. Die Expression der verschiedenen Tags in den Pflanzen war sehr unterschiedlich, wobei der DGD1-CTAP-Tag am stärksten exprimiert war. Mit Pflanzenmaterial dieser Linien kann nun eine Aufreinigung des getaggten Proteins und eventueller Interaktionspartner erfolgen. / The two galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyl-diacylglycerol (DGDG) constitute the bulk of membrane lipids in chloroplasts. They play a crucial role in organell development and are important for the functionality of photosynthetic complexes in thylakoids. Two DGDG synthases, DGD1 and DGD2, are found in Arabidopsis, and the two proteins localize to the chloroplast envelope membranes. The dgd1 mutant which contains only 10% of wild type amounts of DGDG shows a dwarf phenotype and reduced photosynthetic capacity. The DGD1 protein consists of two domains. While the C-terminal part is responsible for galactosyltransferase activity, no clear function can be attributed to the N-terminal extension. To study the function of the N-terminal part of DGD1 in chloroplast membrane lipid synthesis, translational fusion proteins harboring different DGDG synthase sequences were introduced into wild type and dgd1 mutant plants and analyzed for changes in lipid content and growth. The dgd1 mutant phenotype was complemented with a full-length DGD1 sequence, but not with DGD2. Interestingly, the chimeric fusion of the N-terminal part of DGD1 with DGD2 did complement the dgd1 growth and lipid deficiency. Over-expression of the N-terminal part of DGD1 in wild type Arabidopsis plants affected growth and resulted in alterations of leaf morphology. However, this phenotype was distinct from that observed for dgd1, because these transgenic plants contain normal amounts of galactolipids, and leaves are not yellowish. In conclusion, these data suggest that the N-terminal region of DGD1 might be important for galactolipid transport across the chloroplast envelope membranes towards the thylakoid membranes. Interaction studies between N-DGD1 Protein and different membrane lipids showed an interaction between N-DGD1 Protein and MGDG and DGDG. Till now not much is known about the transport mechanisms of DGDG and MGDG between the chloroplast envelopes. This work gave some indications, that the N-terminal part of DGD1 is involved in the transport of MGDG and DGDG between the chloroplast envelopes. Furthermore interaction studies were made for the glycosyltransferases DGD1, DGD2 MGD1, MGD2 and MGD3. Interactions between DGD1, DGD2 and MGD2 were observed. Another way for finding interacting proteins of DGD1 was the expression of a DGD1-CTAPTag fusion protein in the dgd1-1 mutant. These transgenic lines contained a high amount of DGD1-CTAPTag protein. With these plants its now possible to analyze interacting partners of DGD1 with help of Tandem Affinity Purification method.
|
6 |
Engineering the (S)-3-O-Geranylgeranylglyceryl Phosphate Synthase (GGGPS) Monomer from its DimerKharbanda, Neha 25 August 2011 (has links)
(S)-3-O-Geranylgeranylglyceryl Phosphate Synthase (GGGPS) is a TIM (βα)8 barrel protein found in Archaea and the enzyme catalyzing the first step in the biosynthesis of archaeal membrane lipids. The TIM (βα)8 barrel protein fold is thought to have evolved by duplication and fusion of (βα)4 half barrels. We propose that the GGGPS has also evolved from (βα)4 half barrels. One way to test this hypothesis is to generate putative half-barrels experimentally. GGGPS from Archaeaglobus fulgidus, is a dimer of (βα)8 barrels. Thus, before constructing half barrels, a stable monomer is needed to be engineered.
Introducing three substitutions into the dimer interface formed the GGGPS monomer. AUC showed ~50 % of the protein is in the monomeric state. CD experiments confirmed that the engineered protein was properly folded but had decreased thermal stability. In an enzymatic assay, the monomeric GGGPS protein proved as active as the WT protein on a subunit basis.
|
7 |
Engineering the (S)-3-O-Geranylgeranylglyceryl Phosphate Synthase (GGGPS) Monomer from its DimerKharbanda, Neha 25 August 2011 (has links)
(S)-3-O-Geranylgeranylglyceryl Phosphate Synthase (GGGPS) is a TIM (βα)8 barrel protein found in Archaea and the enzyme catalyzing the first step in the biosynthesis of archaeal membrane lipids. The TIM (βα)8 barrel protein fold is thought to have evolved by duplication and fusion of (βα)4 half barrels. We propose that the GGGPS has also evolved from (βα)4 half barrels. One way to test this hypothesis is to generate putative half-barrels experimentally. GGGPS from Archaeaglobus fulgidus, is a dimer of (βα)8 barrels. Thus, before constructing half barrels, a stable monomer is needed to be engineered.
Introducing three substitutions into the dimer interface formed the GGGPS monomer. AUC showed ~50 % of the protein is in the monomeric state. CD experiments confirmed that the engineered protein was properly folded but had decreased thermal stability. In an enzymatic assay, the monomeric GGGPS protein proved as active as the WT protein on a subunit basis.
|
8 |
Redox-regulation of starch and lipid synthesis in leavesKolbe, Anna January 2005 (has links)
Post-translational redox-regulation is a well-known mechanism to regulate enzymes of the Calvin cycle, oxidative pentose phosphate cycle, NADPH export and ATP synthesis in response to light. The aim of the present thesis was to investigate whether a similar mechanism is also regulating carbon storage in leaves.
<br><br>
Previous studies have shown that the key-regulatory enzyme of starch synthesis, ADPglucose pyrophosphorylase (AGPase) is inactivated by formation of an intermolecular disulfide bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme in potato tubers, but the relevance of this mechanism to regulate starch synthesis in leaves was not investigated. The work presented in this thesis shows that AGPase is subject to post-translational redox-regulation in leaves of pea, potato and Arabidopsis in response to day night changes. Light was shown to trigger posttranslational redox-regulation of AGPase. AGPB was rapidly converted from a dimer to a monomer when isolated pea chloroplasts were illuminated and from a monomer to a dimer when preilluminated leaves were darkened. Conversion of AGPB from dimer to monomer was accompanied by an increase in activity due to changes in the kinetik properties of the enzyme. Studies with pea chloroplast extracts showed that AGPase redox-activation is mediated by thioredoxins f and m from spinach in-vitro. In a further set of experiments it was shown that sugars provide a second input leading to AGPase redox activation and increased starch synthesis and that they can act as a signal which is independent from light. External feeding of sugars such as sucrose or trehalose to Arabidopsis leaves in the dark led to conversion of AGPB from dimer to monomer and to an increase in the rate of starch synthesis, while there were no significant changes in the level of 3PGA, an allosteric activator of the enyzme, and in the NADPH/NADP+ ratio. Experiments with transgenic Arabidopsis plants with altered levels of trehalose 6-phosphate (T6P), the precursor of trehalose synthesis, provided genetic evidence that T6P rather than trehalose is leading to AGPase redox-activation. Compared to Wt, leaves expressing E.coli trehalose-phosphate synthase (TPS) in the cytosol showed increased activation of AGPase and higher starch level during the day, while trehalose-phosphate phosphatase (TPP) overexpressing leaves showed the opposite. These changes occurred independently of changes in sugar and sugar-phosphate levels and NADPH/NADP+ ratio. External supply of sucrose to Wt and TPS-overexpressing leaves led to monomerisation of AGPB, while this response was attenuated in TPP expressing leaves, indicating that T6P is involved in the sucrose-dependent redox-activation of AGPase. To provide biochemical evidence that T6P promotes redox-activation of AGPase independently of cytosolic elements, T6P was fed to intact isolated chloroplasts for 15 min. incubation with concentrations down to 100 µM of T6P, but not with sucrose 6-phosphate, sucrose, trehalose or Pi as controls, significantly and specifically increased AGPB monomerisation and AGPase activity within 15 minutes, implying T6P as a signal reporting the cytosolic sugar status to the chloroplast. The response to T6P did not involve changes in the NADPH/NADP+ ratio consistent with T6P modulating redox-transfer to AGPase independently of changes in plastidial redox-state.
<br><br>
Acetyl-CoA carboxylase (ACCase) is known as key-regulatory enzyme of fatty acid and lipid synthesis in plants. At the start of the present thesis there was mainly in vitro evidence in the literature showing redox-regulation of ACCase by DTT, and thioredoxins f and m. In the present thesis the in-vivo relevance of this mechanism to regulate lipid synthesis in leaves was investigated. ACCase activity measurement in leaf tissue collected at the end of the day and night in Arabidopsis leaves revealed a 3-fold higher activation state of the enzyme in the light than in the dark. Redox-activation was accompanied by change in kinetic properties of ACCase, leading to an increase affinity to its substrate acetyl-CoA . In further experiments, DTT as well as sucrose were fed to leaves, and both treatments led to a stimulation in the rate of lipid synthesis accompanied by redox-activation of ACCase and decrease in acetyl-CoA content.
<br><br>
In a final approach, comparison of metabolic and transcript profiling after DTT feeding and after sucrose feeding to leaves provided evidence that redox-modification is an important regulatory mechanism in central metabolic pathways such as TCA cycle and amino acid synthesis, which acts independently of transcript levels. / Es ist bereits seit längerem bekannt, dass viele Enzyme des Calvinzyklus, des oxidativen Pentosephosphatwegs, des NAD(P)H-Exports und der ATP-Synthese durch post-translationale Redox-Modifikation in Antwort auf Licht reguliert werden. In der vorliegenden Arbeit sollte untersucht werden, ob ein ähnlicher Mechanismus auch die Kohlenstoffspeicherung in Blättern reguliert.
<br><br>
Vorangegangene Studien mit Kartoffelknollen zeigten, dass das Schlüsselenzym der Stärkesynthese ADP-Glukose-Pyrophosphorylase (AGPase) durch die Bildung einer Disulfidbrücke zwischen den zwei kleinen Untereinheiten (AGPB) des tetrameren Proteins inaktiviert wird, die Bedeutung dieses Mechanismus für die Stärkesynthese in Blättern blieb jedoch bislang ungeklärt. Die vorliegenden Arbeiten zeigen, das AGPase in Erbsen-, Kartoffel- und Arabidopsis-Blättern über post-translationale Redox-Modifikation in Antwort auf Tag-Nacht Änderungen reguliert wird. Dies erfolgt über ein Licht-abhängiges Signal, da, erstens, AGPB in isolierten Chloroplasten durch Belichtung sehr schnell von Dimer zu Monomer umgewandelt wird und, zweitens, ein Abdunkeln der Blätter zu einer schnellen Umwandlung von AGPB von Monomer zu Dimer führt. Die Monomerisierung von AGPB ging mit Änderungen in den kinetischen Eigenschaften des Enzyms einher, die zu einer Aktivierung führten. Studien mit Extrakten aus Erbsenchloroplasten zeigten, dass die AGPase-Redoxaktivierung in-vitro durch die Thioredoxine f und m aus Spinat vermittelt wird. In einem weiteren experimentellen Ansatz konnte gezeigt werden, dass auch Zucker zu Redox-Aktivierung der AGPase und erhöhter Stärkesynthese in Blättern führen, und dass diese unabhängig von Licht wirken. Externe Zugabe von Zuckern wie Saccharose oder Trehalose an Arabidopsis-Blätter im Dunkeln führten zu Monomerisierung von AGPB und einer Erhöhung der Stärkesyntheserate / während die Spiegel des allosterischen Aktivators 3PGA unverändert blieben und keine Änderungen im NADPH/NADP+-Verhältnis auftraten. Experimente mit transgenen Arabidopsis-Pflanzen mit veränderten Spiegeln des Vorläufers der Trehalosesynthese, Trehalose-6-phosphat (T6P), zeigten, dass T6P und nicht Trehalose zu Redox-Aktivierung von AGPase führt. Expression einer E. coli T6P synthase (TPS) im Zytosol führte zu erhöhter Redox-Aktivierung von AGPase und erhöhter Stäreksynthese in Blättern, während die Expression einer T6P-Phosphatase (TPP) gegenteilige Änderungen bewirkte. Diese Auswirkungen erfolgten unabhängig von Änderungen in den Spiegeln von Zuckern und Zuckerphosphaten oder im NADPH/NADP+-Verhältnis. Externe Zugabe von Saccharose führte zu Monomerisierung von AGPB in Wildtyp und TPS exprimierenden Blättern, während diese Antwort in TPP exprimierenden Blättern stark abgeschwächt war. Dies zeigt, dass T6P eine wesentliche Komponente darstellt, die die Redox-Aktivierung der AGPase in Antwort auf Saccharose vermittelt. T6P wurde auch für 15 min direkt an intakte, isolierte Erbsenchloroplasten gefüttert. T6P Konzentrationen im Bereich von 100 µM bis 10 mM führten zu einem signifikanten und spezifischen Anstieg der AGPB-Monomersierung und der AGPase Aktivität. Dies zeigt, dass T6P auch ohne zytosolische Elemente die Redox-Aktivierung der AGPase stimuliert und somit ein Signal zwischen Zytosol und Plastid darstellt. Diese Antwort erfolgte ohne Änderungen im NADPH/NADP+-Verhältnis, was zeigt, dass T6P eher den Redox-Transfer zu AGPase als den Redoxzustand des Chloroplasten moduliert.
<br><br>
Acetyl-CoA-Carboxylase (ACCase) ist als Schlüsselenzym der Fettsäure- und Lipidsynthese in Pflanzen bekannt. Zu Beginn der vorliegenden Arbeit lagen hauptsächlich in-vitro Befunde vor, die zeigten, dass ACCase durch DTT und thioredoxine f und m über Redox-Modulation reguliert wird. In der Arbeit sollte daher die in-vivo Relevanz dieses Mechanismus für die Regulation der Lipidsynthese in Blättern untersucht werden. ACCase zeigte einen höheren Redox-Aktivierungszustand in Arabidopsis-Blätter, die während des Tages im Vergleich zur Nacht geerntet wurden. Die Redox-Aktivierung der ACCase wurde von Änderungen in den kinetischen Eigenschaften begleitet und führte zu einer erhöhten Affinität des Enzymes gegenüber Acetyl-CoA als Substrat.
<br><br>
In weiteren Versuchen wurde sowohl DTT als auch Saccharose an Blätter gefüttert, und beide Behandlungen führten zu Redox-Aktivierung von ACCase, was mit erhöhten Lipidsynthesraten und einem Rückgang des Acetyl-CoA-Spiegels einherging.
|
9 |
Regulação gênica de isoformas da acetil-coa carboxilase alfa em ovelhas suplementadas com ácido linoleico conjugado / Transcriptional Regulation of Acetyl-CoA carboxylase Alpha isoforms in dairy ewes supplemented with conjugated linoleic acidTiciani, Elvis 07 July 2014 (has links)
Made available in DSpace on 2016-12-08T16:24:18Z (GMT). No. of bitstreams: 1
PGCA14MA138.pdf: 701716 bytes, checksum: ae5be4aae0f8d732a1c72c1f572ee5fa (MD5)
Previous issue date: 2014-07-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Feeding trans-10, cis-12 conjugated linoleic acid (CLA) to lactating ewes reduces milk fat by down-regulating gene expression of enzymes involved in lipid synthesis in mammary gland. An example is acetyl-CoA carboxylase alpha (ACCα), a key enzyme in the de novo fatty acid synthesis pathway. ACCα is encoded by mRNAs transcribed from three promoters, PI, PII and PIII, characterized as tissue-specific in the ovine genome. This study evaluated the effects of a rumen-unprotected trans-10, cis-12 CLA supplement fed to crossbred Lacaune/Texel lactating ewes, on gene expression of different mRNA transcripts of ACCα. Twelve ewes arranged in a completely randomized design received for 14 days one of the following treatments, at 15 (early), 70 (mid) and 120 (late) days of lactation: Control (forage + 0.9 kg of concentrate-DM) and CLA [forage + 0.9 kg of concentrate + 28g/d of CLA (29.9% trans-10, cis-12)]. The CLA supplement was orally dosed. Mammary gland and adipose tissue biopsies were taken on day 14. Subsequently RNA was extracted, cDNA synthesized and real time PCR analysis conducted. Data were analyzed by MIXED procedure. Milk fat content was reduced by CLA supplementation in all stages of lactation. Compared to Control, in the mammary gland CLA reduced (P<0.05)
transcript from PIII in early and mid lactation, increasing transcript from PI in adipose tissue. In the late lactation there was a higher milk fat depression and transcripts PII-derived were downregulated. Overall, our results suggest that trans-10, cis-12 CLA down-regulates ACCα gene expression by decreasing expression from promoter II and III in mammary tissue and increases ACCα gene expression by increasing expression promoter I in adipose tissue, having influences of stage of lactation on the behavior of mRNA isoforms of ACCα / A Suplementação com ácido linoleico conjugado (CLA trans-10, cis-12) para ovelhas em lactação reduz a gordura do leite regulando a expressão dos genes de enzimas envolvidas na síntese lipídica na glândula mamária. Um exemplo é a acetil-CoA carboxilase alfa (ACCα), uma enzima chave na síntese de novo de ácidos graxos. A ACCα é codificada por mRNAs transcritos a partir dos promotores PI, PII, PIII, caracterizados como tecido-específico no genoma ovino. Este estudo avaliou os efeitos da suplementação com CLA trans-10, cis-12 desprotegido da bio-hidrogenação ruminal para ovelhas em lactação cruzadas Lacaune/Texel, sobre a expressão gênica de diferentes transcritos de mRNA da ACCα. Doze ovelhas arranjadas em um delineamento experimental inteiramente casualizado receberam por 14 dias um dos seguintes tratamentos, durante o início, meio e fim de lactação: Controle (forragem + 1 kg de concentrado) e CLA [forragem + 1kg de concentrado + 30mL/d de CLA (29,9% trans-10, cis-12)]. A suplementação com CLA foi administrada oralmente. Foram feitas biópsias de glândula mamária e tecido adiposo no 14º dia de cada período experimental. O RNA foi extraído, o cDNA sintetizado para posterior análise por PCR real time. Os dados foram analisados pelo procedimento MIXED. Teor de gordura
do leite foi reduzido pela suplementação de CLA em todos os períodos de lactação. Comparado ao controle, o CLA reduziu (P<0,05) os transcritos oriundos do PIII na glândula mamária no início e meio da lactação, aumentando transcritos oriundos PI no tecido adiposo. No final da lactação houve uma maior depressão da gordura do leite e transcritos derivados do PII foram reduzidos. Em suma, nossos resultados sugerem que o CLA trans-10, cis-12, regula a expressão gênica da ACCα, diminuindo a expressão a partir do promotor II e III, no tecido mamário e aumentando a expressão gênica ACCα através do PI no tecido adiposo, apresentando influências da fase de lactação sobre o comportamento das isoformas de mRNA da ACCα
|
10 |
SYNTHESIS AND EVALUATION OF LABELED PHOSPHATIDYLGLYCEROL PROBES TO ELUCIDATE MECHANISMS BEHIND CHOLESTEROL TRAFFICKING IN NIEMANN-PICK TYPE C DISEASEZachary J Struzik (12426840) 01 June 2022 (has links)
<p> </p>
<p>Niemann-Pick Type C (NPC) disease is a rare lysosomal storage disorder that occurs in about 1/89,000 to 1/120,000 live births and is characterized by an aberrant accumulation of cholesterol within the late endosome/lysosome of cells. Symptoms of this disease include splenomegaly, neurological deterioration, and often death before adulthood. Mutations in the membrane bound NPC1 or luminal NPC2 proteins lead to a decrease in cholesterol efflux within the lysosomes by which excess cholesterol crystallizes within membranes resulting in cell death. It has been demonstrated that increasing the amount of the lysosomal specific phospholipid Bis(monoacylglycerol)phosphate (BMP), also known as Lysobisphosphatidic acid (LBPA), in cells increases the rate of cholesterol transport in <em>npc1</em>-/- cells, but not in <em>npc</em>2-/- cells, indicating a strong synergistic relationship between the NPC2 protein and the lysosomal membranes. Increasing the amount of phosphatidyl glycerol (PG), a hypothesized precursor to BMP, has also shown an increase in cholesterol egress. While it is hypothesized that the increase in cholesterol clearance in the latter is due to the biosynthesis of LBPA from PG, there is no study to directly confirm this phenomenon. Therefore, we set out to synthesize diastereochemically pure PG containing isotopically labeled oleyl acyl chains to examine LBPA levels using lipidomic analysis of <em>npc1-/-</em> cells post treatment with PG. </p>
<p>Initially, efforts centered around the use of phosphoramidite methodology commonly encountered in DNA oligonucleotide synthesis. While this route proved to be successful in making PG in modest yield (52%), reproducibility of this route with consistent yields was hindered due to the use of tetrabutylammonium fluoride (TBAF) in the final global deprotection step. Thus, we set out to discover a phosphorylated intermediate that did not require TBAF in the final step or contain easily hydrolysable protecting groups. It was discovered that H-phosphonate methodology using diphenyl phosphite for phosphorylation of the glycerol headgroup and backbone proved to be robust enough for PG synthesis. In this strategy, PG can be isolated in two steps from the final protected intermediate by first oxidizing the H-phosphonate from PIII to PV followed by deprotection of the glycerol head group under acidic conditions. Additionally, the H-phosphonate strategy also allowed us to omit headgroup modification prior to phosphorylation which reduced the number of synthetic steps from 11 steps to 7 steps. As a result, we were able to synthesize diastereochemically pure PG more consistently than the previous route in 75% yield. The route was further modified further to incorporate asymmetric acyl chains allowing the selective installation of a labeled acyl chain on the <em>sn</em>-1 or <em>sn</em>-2 positions of the phosphoglycerol backbone. The results from the lipidomic experiments indicate that increased LBPA concentrations in cells rise upon incubation with labeled PG. Additionally, increases in lyso-PG and acyl-PG are also observed leading to several hypotheses on how LBPA might be synthesized from PG. Future directions on this effort include identification of phospholipid species made from PG containing asymmetrically labeled acyl chains. Synthesis of photoaffinity labeled PG is also underway to determine the protein partners involved in PG metabolism.</p>
|
Page generated in 0.0362 seconds