Spelling suggestions: "subject:"iiquid compression folding"" "subject:"iiquid compression colding""
1 |
Manufacture of Complex Geometry Component for Advanced Material StiffnessBydalek, David Russell 01 March 2018 (has links)
The manufacture, laminate design, and modeling of a part with complex geometry are explored. The ultimate goal of the research is to produce a model that accurately predicts part stiffness. This is validated with experimental results of composite parts, which refine material properties for use in a final prototype part model. The secondary goal of this project is to explore manufacturing methods for improved manufacturability of the complex part. The manufacturing portion of the thesis and feedback into material model has incorporated a senior project team to perform research on manufacturing and create composite part to be used for experimental testing. The senior project was designed, led, and managed by the author with support from the committee chair.
Finite element modeling was refined using data from coupon 3-point bend testing to improve estimates on material properties. These properties were fed into a prototype part model which predicted deflection of composite parts with different layups and materials. The results of the model were compared to experimental results from prototype part testing and 3rd party analysis. The results showed that an accurate mid-plane shell element model could be used to accurately predict deflection for 2 of 3 experimental parts. There are recommendations in the thesis to further validate the models and experimental testing.
|
2 |
Characterization of Local Void Content in Carbon Fiber Reinforced Plastic Parts Utilizing Observation of In Situ Fluorescent Dye Within EpoxyWarner, Wyatt Young 01 December 2019 (has links)
Experimentation exploring the movement of voids within carbon fiber reinforced plastics was performed using fluorescent dye infused into the laminates observed through a transparent mold under ultraviolet light. In situ photography was used as an inspection method for void content during Resin Transfer Molding for these laminates. This in situ inspection method for determining the void content of composite laminates was compared to more common ex-situ quality inspection methods i.e. ultrasonic inspection and cross-section microscopy. Results for localized and total void count in each of these methods were directly compared to test samples and linear correlations between the three test methods were sought. Test coupons were then cut from these laminates and were used to calculate the interlaminar shear strength at certain locations throughout the laminates. Although this research did not adequately observe correlations between results obtained from ultrasonic C-scans, cross-sectional microscopy and in situ photography of the surface, it was seen that the fluid dynamics of the thermosetting epoxy used in this experimentation correlated to results obtained from previous experimentation performed by students at Brigham Young University using vegetable oil as a substitute for resin.
|
Page generated in 0.113 seconds