Spelling suggestions: "subject:"iiquid droplets"" "subject:"1iquid droplets""
1 |
Entrainment studiesBradie, John Keir January 1969 (has links)
No description available.
|
2 |
Breakup of liquid dropletsKhare, Prashant 08 June 2015 (has links)
Liquid droplet breakup and dynamics is a phenomena of immense practical importance in a wide variety of applications in science and engineering. Albeit, researchers have been studying this problem for over six decades, the fundamental physics governing droplet deformation and fragmentation is still unknown, not to mention the formulation and development of generalized correlations to predict droplet dynamics. The presence of disparate length and time scales, along with the complex unsteady physics, makes this a formidable problem, theoretically, experimentally and computationally. One of the important applications of interest and the motivation for the current research is a liquid fueled propulsion device, such as diesel, gas turbine or rocket engine. Droplet vaporization and ensuing combustion is accelerated if the droplet size is smaller, which makes any process leading to a reduction in drop size of prime importance in the combustion system design. This thesis is an attempt to address several unanswered questions currently confronting the spray community. Unanswered questions include identification and prediction of breakup modes at varying operating conditions, quantitative description of fundamental processes underlying droplet breakup and generalized correlations for child droplet size distributions and drag coefficient associated with the deformation and fragmentation of Newtonian and non-Newtonian fluids.
The present work is aimed at answering the above questions by investigating the detailed flowfield and structure dynamics of liquid droplet breakup process and extracting essential physics governing this complex multiphase phenomena. High-fidelity direct numerical simulations are conducted using a volume-of-fluid (VOF) interface capturing methodology. To isolate the hydrodynamic mechanisms dictating droplet breakup phenomena, evaporation and compressibility are neglected, and numerical studies are performed for incompressible fluids at isothermal conditions.
For Newtonian fluids, four different mechanisms are identified- oscillatory, bag, multimode and shear breakup modes. Various events during the deformation and fragmentation process are quantitatively identified and correlations are developed to predict the breakup mechanisms and droplet size distributions for a broad range of operating conditions. It was found that for We > 300 and Oh < 0.1 for rho_l/rho_g = 8.29, the child droplet size distributions can be modeled by a log-normal distribution. A correlation to predict the sauter mean diameter, d32, is also developed, given by d32 / D = 8We^-0.72 / Cd.
Temporal evolution of momentum balance and droplet structure are also used to calculate the drag coefficient at each time step from first principles. Results show that the drag coefficient first increases to a maximum as the droplet frontal area increases and then decreases at the initiation of breakup. The drag coefficient reaches a steady value at the end of droplet lifetime, corresponding to the momentum retained by the droplet. A correlation to predict the time-mean drag coefficient given by, Cd / Cd,0 = 2We-^0.175, is developed, which indicates that the time averaged drag coefficient decreases with Weber number.
The motivation to study non-Newtonian liquid droplet breakup stems from the various advantages gelled propellants offer as compared to traditional liquid or solid propellants in combustion systems, particularly in rocket engines. It was found that the breakup behavior of pseudoplastic, non-Newtonian liquids is drastically different as compared to Newtonian droplets. Several flow features commonly exhibited by non-Newtonian fluids are observed during the breakup process. The breakup initiates with the formation of beads-in-a-string due to the non-Newtonian nature of the fluid under consideration. This is followed by rapid rotation of the droplet with the appearance of helical instability and liquid budges, which forms the sites for primary and satellite droplet shedding. Child droplet size distribution are also examined and it is found that a Gaussian curve universally characterizes the droplets produced during non-Newtonian droplet breakup process.
To put all things in perspective, the objectives of the thesis were two folds: (1) elucidate breakup physics for Newtonian and non-Newtonian liquid droplet deformation and breakup, and (2) develop correlations which can be used in an Eulerian-Lagrangian framework to study large-scale engineering problems. It is hoped that this research contributed to droplet breakup and dynamics literature by providing a more thorough and quantitative understanding of the breakup phenomena of liquid droplets and furnished models which can be used in future research endeavors.
|
3 |
Observations of the origin and distribution of primary and secondary ice in cloudsLloyd, Gary James January 2014 (has links)
A detailed understanding of cloud microphysical processes is crucial for a large range of scientific disciplines that require knowledge of cloud particles for accurate climate and weather prediction. This thesis focuses on 3 measurement campaigns, encompassing both airborne and ground based measurements of the microphysical structures observed in cold, warm and occluded frontal systems around the United Kingdom, stratocumulus clouds in the Arctic and many different clouds observed over a 6 week period at a high-alpine site in the Swiss Alps. Particular attention was paid to the origin and distribution of both primary and secondary ice and the dominant features associated with ice phase processes. During investigation of cold, warm and occluded frontal systems associated with mid-latitude cyclones around the U.K., secondary ice was often found to dominate the number and mass concentrations of ice particles in all systems. The presence of large liquid droplets was sometimes observed in close proximity to regions of secondary ice production. The existence of these provides a possible mechanism by which rime-splintering is greatly enhanced through the creation of instant rimers as the large drops freeze. In-situ measurements during the cold frontal case were used to calculate rates of diabatic heating during a comparison between bin-resolved and bulk microphysics schemes. Observations in arctic stratocumulus clouds during spring and summer seasons revealed higher ice concentrations in the summer cases when compared to the spring season. This is attributed to secondary ice production actively enhancing ice concentrations in the summer, due to the higher temperature range the clouds spanned. At Jungfraujoch in the Swiss Alps, ground based measurements allowed us to obtain high spatial scale resolution measurements of cloud microphysics and we found transitions between high and low ice mass fractions that took place on differing temporal scales spanning seconds to hours. During the campaign measurements of aerosol properties at an out of cloud site, Schilthorn, were made. When analysing a Saharan Dust Event that took place a possible link between the number of U.V. fluorescent particles and the number of ice particles was found in the temperature range around -10 ºC.
|
4 |
Multiphase Flow Effects on Naphthenic Acid Corrosion of Carbon SteelJauseau, Nicolas January 2012 (has links)
No description available.
|
Page generated in 0.052 seconds