Spelling suggestions: "subject:"iiquid form"" "subject:"iiquid fram""
1 |
Hydrocarbon bioremediation using bioactive foamRipley, Mark Brian January 2000 (has links)
No description available.
|
2 |
The incorporation of bubbles into a computer graphics fluid simulationGreenwood, Shannon Thomas 29 August 2005 (has links)
We present methods for incorporating bubbles into a photorealistc fluid simulation. Previous methods of fluid simulation in computer graphics do not include bubbles. Our system automatically creates bubbles, which are simulated on top of the fluid simulation. These bubbles are approximated by spheres and are rendered with the fluid to appear as one continuous surface. This enhances the overall realism of the appearance of a splashing fluid for computer graphics. Our methods leverage the particle level set representation of the fluid surface. We create bubbles from escaped marker particles from the outside to the inside. These marker particles might represent air that has been trapped within the fluid surface. Further, we detect when air is trapped in the fluid and create bubbles within this space. This gives the impression that the air pocket has become bubbles and is an inexpensive way to simulate the air trapped in air pockets. The results of the simulation are rendered with a raytracer that includes caustics. This allows the creation of photorealistic images. These images support our position that the simple addition of bubbles included in a fluid simulation creates results that are much more true to life.
|
3 |
The incorporation of bubbles into a computer graphics fluid simulationGreenwood, Shannon Thomas 29 August 2005 (has links)
We present methods for incorporating bubbles into a photorealistc fluid simulation. Previous methods of fluid simulation in computer graphics do not include bubbles. Our system automatically creates bubbles, which are simulated on top of the fluid simulation. These bubbles are approximated by spheres and are rendered with the fluid to appear as one continuous surface. This enhances the overall realism of the appearance of a splashing fluid for computer graphics. Our methods leverage the particle level set representation of the fluid surface. We create bubbles from escaped marker particles from the outside to the inside. These marker particles might represent air that has been trapped within the fluid surface. Further, we detect when air is trapped in the fluid and create bubbles within this space. This gives the impression that the air pocket has become bubbles and is an inexpensive way to simulate the air trapped in air pockets. The results of the simulation are rendered with a raytracer that includes caustics. This allows the creation of photorealistic images. These images support our position that the simple addition of bubbles included in a fluid simulation creates results that are much more true to life.
|
4 |
Electrokinetic phenomena in aqueous suspended films and foamsHussein Sheik, Abdulkadir January 2018 (has links)
Electrokinetic phenomena in liquid foams is at a junction between two areas. On one side is the investigation of liquid foam drainage, and on the other side is electrokinetics of surface driven flow on solid-liquid interfaces. However, the electrokinetic phenomena in liquid foam films significantly lack understanding. Therefore, the novelty of the thesis is to address the mentioned gap in three stages. The outcome has potential applications in a novel separation approaches of biological molecules such as proteins and DNA. In the first stage, the electrokinetic flow of a sufficiently thick (180 μm) free liquid film was investigated using cationic and anionic surfactants by confocal micron-resolution particle image velocimetry (μ-PIV). The reverse of the surface charge resulted in a shift in charge of the electrical double layer at the free liquid film interface, which caused the direction of the electroosmotic velocity to reverse. In each surfactant type used, the fluid velocity profiles were measured at different depths of the free liquid film (different z-planes). It was found how the fluid velocity varied with depth. Numerical simulations of the electroosmotic flow in the same system were also performed using Finite Element Method to understand the flow dynamics. A reasonably good agreement was found between the numerical simulations and the experimental results validating the model. In the second stage, instead of flow visualisation particles, rhodamine B (RB) and fluorescein isocyanate (FICT) dye were added to the free liquid film. Under the initial conditions of pH 7.2, RB is a neutral dye, and FICT has a -2 charge. Under an imposed electric field pH variations were detected and an interesting flow profile was observed. The CFD model developed earlier (stage one) was modified to include the local pH variation. The behaviour of the simulated pH had a good agreement with the behaviour of the FICT. Further confirmation of local pH variation was undertaken using extra new experiments which also showed a good agreed with the simulation. In the third stage, a liquid foam electrokinetic separation chamber was designed to extend the study to include practical applications. The first challenge was to achieve a stable foam under external electric field. A polymer-surfactant mixture can solve the stability problem. However, the mixture of polymers required an alkaline pH (>9) condition for the polymer mixture to be soluble in the aqueous system. Lectin and tetramethylrhodamine goat anti-rabbit (IgG) protein mixture with different molecular mass to charge ratio (50 kDa and 150 kDa) were injected near the anode. The system was monitored in three location: (a) in a vicinity of the injection region, (b) between the two electrodes and (c) in a vicinity of the cathode. In the region (a), a decay of the luminescence intensity of the fluorescein of the two proteins was noted with varying rate. In region (b), an increase followed by a decrease in fluorescein intensity of the proteins was observed again at a varying rate. In region (c), an increase of the dye concentration was observed and again at a different rate. The observed difference was caused by difference of the electrophoretic velocity of the two proteins. The setup proved that proteins could be separated based on their electrophoretic mobility inside a liquid foam. The findings from the thesis show the ability to manipulate fluid flow within a free liquid film, and inside a liquid foam system by an external DC electric field, is not only interesting academically but has potential application in a novel separation approach of biological molecules and beyond. The result show, with the correct surfactant formulation, it possible to make a stable foam under an electric field which can be set up for separation of proteins using foam electrokinetics.
|
5 |
Dynamique rapide dans les mousses liquides : expériences de drainage et de vibration à l’échelle d’un bord de Plateau / Fast dynamic in liquid foams : drainage and vibrations experiments at the Plateau border scaleCohen, Alexandre 22 September 2015 (has links)
Je reporte ici une étude expérimentale sur la réorganisation inertielle de liquide dans un microcanal, constitutif des mousses liquides, appelé le bord de Plateau qui est soutenu par trois films de savon. Deux perturbations sont appliquées sur un bord de Plateau. Premièrement, une goutte y est ajoutée. La viscosité du liquide et taille initiale du bord de Plateau et de la goutte sont variés. La redistribution du liquide ajouté est pilotée par les forces capillaires. On observe un régime inertiel où un ressaut hydraulique capillaire se déplace à vitesse et géométrie constantes dans le bord de Plateau. Ce régime est décrit théoriquement et révèle le rôle majeur joué par les films de savon. On observe aussi un régime dominé par les effets visqueux où le liquide ajouté est redistribué selon une dynamique de type diffusive. La transition entre les deux régimes dépend des paramètres de contrôle du système et est caractérisée. La seconde perturbation est acoustique. Une plaque vibrante perturbe le bord de Plateau et les films. La taille du bord de Plateau, la fréquence et l’amplitude de forçage sont variées. Une onde de flexion se propage dans les films qui ont le bord de Plateau pour condition limite fixe ou libre selon sa masse. A haute amplitude, un régime non linéaire apparaît et le liquide dans le bord de Plateau se réorganise en trois zones de taille et d’amplitude d’oscillation très contrastées. Dans chacune des zones, le déphasage entre l’onde dans le film et l’onde dans le bord de Plateau est différent. Le système couplé du film et du bord de Plateau est modélisé par un oscillateur forcé dont la fréquence propre dépend de la fréquence de forçage. / I report an experimental study of inertial liquid reorganization into a liquid foam microchannel, also called a Plateau border supported by three soap films. Two perturbations are applied on the Plateau border. Firstly, a liquid drop is injected. Liquid viscosity, drop size and Plateau border size are changed. The liquid redistribution is drived by capillary forces. We observe an inertial regime where a capillary hydraulic jump move on the Plateau border with a constant shape and a constant velocity. This regime is modeled and shows the importance of soap films. We also observe a viscous-dominated regime where the added liquid is redistributed with a diffusive-like dynamic. The transition between the two regimes is investigated and qualitatively accounted for. Secondly, the Plateau border and the three films are vibrated by a plate. A bending wave is shown to propagate in the soap films with the Plateau border for free or fixed limit conditions according to its mass. For high amplitudes, a non linear regime appears and the liquid inside the Plateau border is redistributed along three zones of very contrasted size and oscillation amplitudes. In each zone, the phase difference between the wave in soap films and the wave in Plateau border is different. The system composed of films and the Plateau border is modelled by a forced oscillator with a resonance frequency which depends on the forced frequency.
|
6 |
X-ray and neutron radiography of optically opaque fluid flows: experiments with particle-laden liquid metals and liquid foamsLappan, Tobias 14 December 2021 (has links)
Multi-phase flows of small solid particles and gas bubbles in optically opaque fluids play a key role in both mineral and metallurgical processing, which use the principle of froth flotation and bubble flotation, respectively. To gain visual insight into such particle-laden multi-phase flows, this dissertation investigates the application of radiographic techniques, employing both X-rays and neutron radiation. Lab-scale experiments are performed with model particles in liquid foams and liquid metals, focussing on the time-resolved measurement of the particles’ motion in the multi-phase flows, aiming for a sufficient contrast-to-noise ratio in the X-ray or neutron image sequences.
The model experiments in this dissertation demonstrate the capabilities of X-ray and neutron radiography to image multi-phase flows in particle-laden and optically opaque fluids, especially to measure the motions of small particles with high spatial and temporal resolution. X-ray radiography enables to track custom-tailored tracer particles acting as tools for experimental investigations of flow phenomena in three-dimensional liquid foams. Both radiographic techniques supplement each other for imaging measurements of multi-phase flows with gas bubbles and solid particles in liquid metals. However, to visualise smallest model particles in liquid metal flows, neutron radiography proves to be the more promising technique compared to X-ray radiography. All in all, this dissertation contributes to paving the way for systematic radiographic measurements and further studies of particle-laden flows in optically opaque fluids.
|
Page generated in 0.0407 seconds