• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation et lois de variation du coefficient de transfert de chaleur surface/ liquide en ébullition pour un liquide alimentaire dans un évaporateur à flot tombant

Ali-Adib, Tarif 08 February 2008 (has links) (PDF)
Le coefficient de transfert de chaleur est nécessaire pour concevoir et dimensionner un évaporateur utilisé pour concentrer un liquide, tel que rencontré couramment dans les industries alimentaires. Le coefficient de transfert de chaleur le plus variable et le plus incertain est du coté produit, entre paroi et liquide, noté « h ». Il varie à la fois avec les propriétés thermo-physiques du liquide traité (ηL, σL, λL, ρL , CpL, ω, ...) et avec les paramètres du procédé (type d'évaporateur, φ ou Δθ, Γ (δ), P, rugosité de la surface, encrassement, etc), ces grandeurs étant définies dans le texte. Mais h est aussi lié au régime d'ébullition (nucléée ou non nucléée), et pour les évaporateurs de type « flot tombant », au régime d'écoulement laminaire ou turbulent, selon le nombre de Reynolds en film Ref. Nous avons étudié le cas des évaporateurs « à flot tombant », très utilisés dans les industries alimentaires pour concentrer le lait et les produits laitiers, les jus sucrés, les jus de fruits et légumes. L'objectif de notre travail était de définir une méthode fiable et économique pour évaluer a priori le coefficient de transfert de chaleur h coté liquide en ébullition, dans un évaporateur flot tombant. La première partie de la thèse a été consacrée à l'analyse bibliographique, qui a révélé une grande incertitude actuelle dans la prévision de h, sur la base des formules de la littérature, et des paramètres descripteurs proposés. La deuxième partie de la thèse a été de concevoir et construire un pilote utilisable pour estimer h, dans des conditions stationnaires connues et reproductibles. Dans la troisième partie, on présente les résultats et commente les lois de variations de h en fonction de la concentration de matière sèche du liquide XMS, de la température d'ébullition de liquide θL (ou P), du flux de chaleur φ ou (Δθ), et du débit massique de liquide par unité de périmètre de tube Γ, pour des propriétés de surface de chauffe fixées (ici, paroi en acier inoxydable poli Rs ≈ 0,8 μm). On commente l'effet sur h de chaque variable isolément, les autres étant maintenues constantes, ce qui confirme l'importance de la transition du régime non-nucléé au régime nucléé, cette transition variant avec la nature du liquide, sa concentration, et le flux de chaleur. On a montré la possibilité de modéliser un produit donné dans l'ensemble du domaine expérimental, où tous les paramètres peuvent varier simultanément, avec peu de coefficients, selon deux types d'équations (polynomiale et puissance). On a comparé le cas d'un liquide Newtonien (jus sucré) et non-Newtonien (solution de CMC dans l'eau). On a aussi observé le débit de mouillage critique Γcri et ses lois de variation. On a aussi démontré la possibilité de simplifier le plan d'expérience, aussi bien pour les liquides Newtoniens que non-Newtoniens, tout en gardant un coefficient de corrélation satisfaisant dans le domaine Γ > Γcri, cette modélisation pouvant servir de base de données produit pour l'ingénierie.

Page generated in 0.082 seconds