Spelling suggestions: "subject:"epissage para noyau"" "subject:"fouissage para noyau""
1 |
Contribution à l'analyse statistique des données fontionnelles / Contribution to statistical analysis of functional dataSaumard, Mathieu 23 May 2013 (has links)
Dans cette thèse, nous nous intéressons aux données fonctionnelles. La généralisation du modèle linéaire généralisé fonctionnel au modèle défini par des équations estimantes est étudiée. Nous obtenons un théorème du type théorème de la limite centrale pour l'estimateur considéré. Les instruments optimaux sont estimés, et nous obtenons une convergence uniforme des estimateurs. Nous nous intéressons ensuite à différents tests en données fonctionnelles. Il s'agit de tests non-paramétriques pour étudier l'effet d'une covariable aléatoire fonctionnelle sur un terme d'erreur, qui peut être directement observé comme une réponse ou estimé à partir d'un modèle fonctionnel comme le modèle linéaire fonctionnel. Nous avons prouvé, pour pouvoir mettre en oeuvre les différents tests, un résultat de réduction de la dimension qui s'appuie sur des projections de la covariable fonctionnelle. Nous construisons des tests de non-effet et d'adéquation en utilisant soit un lissage par un noyau, soit un lissage par les plus proches voisins. Un test d'adéquation dans le modèle linéaire fonctionnel est proposé. Tous ces tests sont étudiés d'un point de vue théorique et pratique. / In this thesis, we are interested in the functional data. The problem of estimation in a model of estimating equations is studying. We derive a central limit type theorem for the considered estimator. The optimal instruments are estimated, and we obtain a uniform convergence of the estimators. We are then interested in various testing with functional data. We study the problem of nonparametric testing for the effect of a random functional covariate on an error term which could be directly observed as a response or estimated from a functional model like for instance the functional linear model. We proved, in order to construct the tests, a result of dimension reduction which relies on projections of the functional covariate. We have constructed no-effect tests by using a kernel smoothing or a nearest neighbor smoothing. A goodness-of-fit test in the functional linear model is also proposed. All these tests are studied from a theoretical and practical perspective.
|
2 |
Quelques contributions à l'estimation des modèles définis par des équations estimantes conditionnelles / Some contributions to the statistical inference in models defined by conditional estimating equationsLi, Weiyu 15 July 2015 (has links)
Dans cette thèse, nous étudions des modèles définis par des équations de moments conditionnels. Une grande partie de modèles statistiques (régressions, régressions quantiles, modèles de transformations, modèles à variables instrumentales, etc.) peuvent se définir sous cette forme. Nous nous intéressons au cas des modèles avec un paramètre à estimer de dimension finie, ainsi qu’au cas des modèles semi paramétriques nécessitant l’estimation d’un paramètre de dimension finie et d’un paramètre de dimension infinie. Dans la classe des modèles semi paramétriques étudiés, nous nous concentrons sur les modèles à direction révélatrice unique qui réalisent un compromis entre une modélisation paramétrique simple et précise, mais trop rigide et donc exposée à une erreur de modèle, et l’estimation non paramétrique, très flexible mais souffrant du fléau de la dimension. En particulier, nous étudions ces modèles semi paramétriques en présence de censure aléatoire. Le fil conducteur de notre étude est un contraste sous la forme d’une U-statistique, qui permet d’estimer les paramètres inconnus dans des modèles généraux. / In this dissertation we study statistical models defined by condition estimating equations. Many statistical models could be stated under this form (mean regression, quantile regression, transformation models, instrumental variable models, etc.). We consider models with finite dimensional unknown parameter, as well as semiparametric models involving an additional infinite dimensional parameter. In the latter case, we focus on single-index models that realize an appealing compromise between parametric specifications, simple and leading to accurate estimates, but too restrictive and likely misspecified, and the nonparametric approaches, flexible but suffering from the curse of dimensionality. In particular, we study the single-index models in the presence of random censoring. The guiding line of our study is a U-statistics which allows to estimate the unknown parameters in a wide spectrum of models.
|
Page generated in 0.0435 seconds