• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Article Recommendation in Literature Digital Libraries

Hsiung, Wen-Chiang 02 September 2002 (has links)
Literature digital libraries is perhaps one of the most important resources to research as the preserved literature data is vital to any researchers and practitioners who need to now what people have done previously in a particular area. The emergence of World Wide Web (www) further boosts the circulation power of literature digital libraries, and people who are interested in a particular topic may easily find related articles by searching a literature digital library that provides a www interface. However, it is quite often that a given search condition will yield a large number of articles, among which only a small subset will indeed interest the user. To provide more effective and efficient information search, many literature digital libraries are equipped with a recommendation subsystem that recommend articles to a user based on his past or current interest. In this thesis, we adapt the existing approaches for web page recommendation to the recommendation of literature digital libraries. We have investigated issues for article recommendation of a literature digital library. We have developed a recommendation framework in this context that makes use of web log of a literature digital library. This framework consists of three sequential steps: data preparation of the web log, association discovery, and article recommendations. We proposed three alternatives in identifying transactions from a web log, adapted the MSApriori algorithm for discovery large itemsets, and discussed two approaches, namely hypergraph and association based recommendations, for making recommendation. These alternatives and approaches were evaluated using the web log of an operational electronic thesis system at NSYSU. It has been found that query-chosen and session-chosen are better methods for transaction identification, and hypergraph based approach yields better quality of article recommendation and has stable running time.
2

Combining Content-based and Collaborative Article Recommendation in Literature Digital Libraries

Chuang, Shih-Min 11 July 2003 (has links)
Literature digital libraries are the source of digitalized literature data, from which Researchers can search for articles that meet their personal interest. However, Users often confused by the large number of articles stored in a digital library and a single query will typically yield a large number of articles, among which only a small subset will indeed interest the user. To provide more effective and efficient information search, many systems are equipped with a recommendation subsystem that recommends articles that users might be interested. In this thesis, we aim to research a number of recommendation techniques for making personalized recommendation. In light of the previous work that used collaborative approach for making recommendation for literature digital libraries, in this thesis, we first propose three content-based recommendation approaches, followed by a set of hybrid approaches that combine both content-based and collaborative methods. These alternatives and approaches were evaluated using the web log of an operational electronic thesis system at NSYSU. It has been found the hybrid approaches yields better quality of articles recommendation.
3

Employing Social Networks for Recommendation in a Literature Digital Library

Liao, Yi-fan 04 August 2006 (has links)
Interpersonal relationship and recommendation are the important relation and popular mechanism. Living in the information-overloading age, the original information searching mechanisms, which require the specification of keywords, are ineffective and impractical. Moreover, a variety of recommendation techniques have been proposed and many of them have been implemented in real systems, especially in online stores. Among different recommendation techniques proposed in the literature, the content-based and collaborative filtering approaches have been broadly adopted by membership stores that maintain users¡¦ long term interest. For short-term interest, by far the content-based approach is the most popular one for recommendation. However, most of the proposed recommendation approaches do not take the social information as an important factor. In this study, we proposed several social network-based recommendation approaches that take into account the similarities of items with respect to their social closeness for meeting users¡¦ short term interests. Our experiment evaluation results show that social network-based approaches perform better than the content-based counterpart, if the user¡¦s short term interest profile contains articles of similar content. Nonetheless, content-based approach becomes better when articles in the profile are diversified in their content. Besides, contrast to content-based approach, social network-based approach is less likely to recommend articles which readers do not value. Finally, the desired articles recommended by content-based approach are very different from those by social network-based approach. This suggests the development of some hybrid recommendation method that utilizes both content and social network when making recommendations.
4

Combining Social Networks and Content for Recommendation in a Literature Digital Library

Huang, Yu-chin 24 July 2008 (has links)
Living in an information-overloading age, the original information searching mechanisms are ineffective and impractical. As the e-commerce is more and more popular, using information technology to discover the latent demand of customers becomes an important issue. Hence, a variety of recommendation techniques have been proposed and many of them have been implemented in real systems, mostly in online stores. Among the techniques, the content-based and collaborative filtering approaches are the ones broadly adopted and proved to be successful. Recently, social network-based recommendation approach has been proposed that takes into account the similarities of items with respect to their social closeness. The social network-based approach performs better than content-based approach in some scenarios and it can also avoid recommending articles that have high content similarity to a user¡¦s favorite articles but low quality. Therefore, we propose three hybrid approaches, Switching, Proportional, and Fusion that combine content-based and social network-based approaches in order to achieve a better performance. Our experimental result shows that even though the proposed approaches have pros and cons under different scenarios, in general they achieve better performance than individual approaches. Besides, we generate some synthetic articles that have close content similarities to articles in our collection to evaluate the fidelity of each approach. The experimental results show that approaches incorporating social network information have lower chance to recommend these faked articles.

Page generated in 0.0724 seconds