Spelling suggestions: "subject:"1ithium -- biodegradation"" "subject:"1ithium -- diodegradation""
1 |
Pyrite weathering and lithium (Li?) transport under unsaturated flow conditions in model and mine-tailing systemsAlarcon Leon, Edgardo January 2005 (has links)
[Truncated abstract] As mineral deposits continue to be mined, the non economic gangue materials such as sulphides (e.g. pyrite) that are extracted as part of the ore body or overburden are deposited within the waste rock and/or milled tailings. As a result of natural weathering processes, these reactive materials represent a potential hazard to surrounding environments. A major consequence, resulting from mine-waste impoundments containing sulphidic materials, relates to the offsite movement of low pH leachates containing elevated concentrations of metal ions posing a contamination threat. The processes and mechanisms acting in the formation of acid mine drainage (AMD) are highly variable and, to a high extent, controlled by climatic conditions as the main driver of water flow and wetness of the system which in turn determines the availability of oxygen as well as water for pyrite weathering. In particular, this thesis is based on the hypothesis that in semiarid and arid climates the acid production may be water … The experiments were repeated at different water contents ranging from 0.24 to 0.33 cm3 cm-3. Breakthrough curves (BTC) of Li+, K+, Ca2+, Mg2+, Na+ and pH were measured and described with models of different complexities. This included the use of a simple linear and non-linear isotherms for Li+ alone, a binary Li+ - K+ ion exchange, and a complete multicomponent chemical equilibrium description of ion transport. The latter, by including dissolution of primary minerals which released base cations such as Mg2+, Ca2+ and K+ explained some of the elution patterns of base cations for which the Li+ - K+ exchange was the dominant process. Furthermore, under unsaturated water flow conditions, retardation of Li+ increased with decreasing water content. Thus solute mobility in mafic rock tailings appears to decrease under strongly unsaturated water flow conditions.
|
Page generated in 0.0901 seconds