• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AN AUGER ELECTRON SPECTROSCOPIC AND KINETIC STUDY OF THE REACTION OF SULFUR DIOXIDE WITH ATOMICALLY CLEAN LITHIUM SURFACES.

Nebesny, Kenneth Walter January 1984 (has links)
The growth of the layer formed on atomically clean lithium metal upon exposure to SO₂ gas is sequentially studied by controlling the quantity of gas reacted with the surface in a specially constructed vacuum system. A Fast Fourier Transform algorithm for the removal of instrumental broadening, and quantized and inelastic electron loss processes from the background of an Auger spectrum is presented. The deconvolved peaks for the S(LMM) and O(KKL) valence transitions are used to determine the molecular composition of the layer at each stage of its formation. The associated peak areas give the quantity of SO₂ reacted with the surface and the relative amounts of sulfur and oxygen present in each layer. The results indicate that two distinct layers of different composition are formed. The lower layer is a complete monolayer of Li₂O/Li₂S in a two-to-one ratio. The upper layer is thicker and consists of LiS₂O₄ and LiS₂O₃ in a 50% mixture. The formation of the upper layer is observed only after exposures of the surface to partial pressures of SO₂ greater than one millitorr. A model to explain the formation of the two layers and the observed pressure dependence is given. A flow method is used to study the kinetics of the Li-SO₂ reaction at submonolayer coverages. The pressure in a reaction vessel is monitored as a function of time when a fresh Li surface is exposed. A reaction order between 0.5 and 0.9 results, indicating that the surface of the scraped Li is energetically heterogeneous with respect to sites available for adsorption. An Arrhenius plot of the data indicates that the activation energy for the dissociative chemisorption to form the first monolayer lies between 2 and 5 kcal/mole. The sources for site heterogeneity and the activation energy are discussed. The resulting molecular model is used in combination with preliminary electrochemical results to compare the gas phase layer with the film formed on Li anodes in the Li/SO₂ ambient temperature battery. The model proves to be useful in explaining storage and discharge characteristics of the battery that are due to the presence of the anodic film.
2

SURFACE REACTIONS AND SURFACE ANALYSIS OF LITHIUM METAL AND ITS COMPOUNDS STUDIED BY AUGER ELECTRON SPECTROSCOPY, X-RAY PHOTOELECTRON SPECTROSCOPY AND RUTHERFORD BACKSCATTERING SPECTROMETRY (THERMAL BATTERIES).

Burrow, Bradley James January 1984 (has links)
The development of analysis techniques necessary for the quantitative, chemical surface analysis of lithium-containing solids important in the construction of high energy density batteries is presented. Electron beam damage is discovered to be the source of apparent lithium metal formation in Li(ls) XPS spectra of lithium salts. Beam Damage thresholds of Li₂O, Li₂CO₃ and Li₂SO₄ are calculated using time-dependent Auger spectra, and possible mechanisms are discussed. The variables which affect Auger quantitation are reviewed with particular emphasis on low energy transitions. Two experimental attempts at measuring the instrument response function for the cylindrical mirror analyzer and electron multiplier are discussed. Background correction techniques proposed in the literature are compared using synthesized Auger data. Auger lineshapes are synthesized by a series of calculations which mimic each step of the Auger electron's path from the atomic core level to the detector. The results indicate that the SIBS (Sequential Inelastic Background Subtraction) method is more applicable to Auger analysis because of its analytical accuracy, speed and ability to handle spectra with poor signal to noise. The special problem of low energy background subtraction is resolved through the use of a new five-parameter function which adequately accounts for the analyzer distortions and secondary cascade in one calculation. Using the above correction techniques, Auger spectra, peak energies, relative intensities and FWHM's of Li₂O, LiOHNH₂O, LiH, Li₃N, Li₂CO₃ and Li₂SO₄NH₂O are presented. Despite special handling techniques, the hydroxide, hydride and nitride reveal extensive oxidation. The oxyanion salts reveal little Li Auger intensity until substantial anion desorption had occurred. The reaction products of lithium with oxygen, water and carbon dioxide are studied by AES. Results indicate the formation of Li₂O, LiOHNH₂O and Li₂O with hydrocarbons, respectively. These results are used to construct a plausible surface structure of the Li-SO₂ interface which explains its stability to self-discharge corrosion and yet maintain electronic conductivity for external discharge. RBS and AES depth profiling are used to analyze potassium-implanted glasses. The results indicate a great deal of ionic migration for glasses which leads to a speculative mechanism for alkali corrosion of glasses.

Page generated in 0.0573 seconds