• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ambient Hydrothermal Synthesis of Lithium Iron Phosphate and Its Electrochemical Properties in Lithium-ion Batteries

Liang, Yi-Ping 26 September 2011 (has links)
Lithium iron phosphate (LiFePO4) has been synthesized by hydrothermal synthesis using pyrrole as an efficient reducing agent. The oxidized Fe3+ in the system reacts with pyrrole that can form polypyrrole (PPy) to generate Fe2+. The PPy can also be a carbon source for further calcination. The observations of scanning electron microscope (SEM) and transmission electron microscope (TEM) show that the particle size of LiFePO4 is around 500 nm and a layer of carbon coats on LiFePO4. The chemical composition of the LiFePO4 was characterized by elemental analysis (EA) and inductively coupled plasma mass spectroscopy (ICP/MS). The results of TEM and X-ray diffraction (XRD) show the structure of LiFePO4 is orthorhombic olivine. Raman and X-ray photoelectron spectroscopy (XPS) results indicate that pyrrole as a reducing agent prevents the impurity of Fe3+ formation and the resulting polypyrrole plays a role as carbon source. The calcination of LiFePO4 greatly affects the energy density. In addition, the carbon contain in the LiFePO4 powder is controllable using the addition of Fe3+ to enhance the electrical conductivity. Moreover, the electrochemical results show the energy capacity of the hydrothermal LiFePO4 is 152 mAh g−1. The LiFePO4 has a better rate discharge capability compared with LiFePO4 synthesized with ascorbic acid as a reducing agent.
2

Hydrothermal synthesis of lithium iron phosphate with Fe(III) as precursor using pyrrole as an efficient reducing agent

Chen, Wen-jing 03 August 2012 (has links)
Lithium iron phosphate (LiFePO4) is prepared by hydrothermal process using Fe(III) as precursor and pyrrole as an efficient reducing agent. The Fe(III) precursor in the system reacts with pyrrole to generate polypyrrole (PPy) and reduce Fe(III) to Fe(II). The different molar ratio Fe(III) polymerize different content of PPy and PPy can also be a carbon source for further calcination. The structural and morphological properties of LiFePO4 powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and a transmission electron microscope (TEM). The XRD and TEM results demonstrate that LiFePO4 powder has an orthorhombic olivine-type structure with a space group of Pnma. The SEM and TEM results show that the particle size of LiFePO4 is around 200 nm and a layer of carbon coats on LiFePO4. The chemical composition of the LiFePO4 powder was characterized by elemental analysis (EA) and inductively coupled plasma/mass spectroscopy (ICP/MS). Raman and X-ray photoelectron spectroscopy (XPS) results indicate that pyrrole as a reducing agent reduces and prevents the formation of Fe(III) impurity and the resulting PPy plays a role as carbon source. Among the synthesized cathode materials, LiFePO4 synthesized using 5% molar ratio of Fe(III) and subsequent calcinations of 600 ¢XC shows the best electrochemical property with an discharge capacity of 160 mAhg−1 close to its theoretical capacity 170 mAh g−1 at 0.2 C rate. Using 10% molar ratio of Fe(III), and the discharge capacity of LiFePO4 at 10 C rate reaches 106 mAhg−1.

Page generated in 0.1311 seconds