• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Colonizing Northern Landscapes: Population Genetics and Phylogeography of Wood Frogs (Lithobates Sylvaticus) in the James Bay

D'Aoust-Messier, Andrée-Michelle 31 August 2012 (has links)
The genetic structuring of populations can be influenced by present processes and past events. One of the largest historical events to affect the distribution and genetic characteristics of present-day North American biota is the Pleistocene glaciation. Thus, the study of post-glacial colonization patterns of species in northern landscapes can relay important ecological information, as species had to expand their range extensively following the retreat of the glaciers and are often at the terminal end of their expansion. These species consequently exhibit the genetic fingerprints of sequential founder events, in turn decreasing the genetic variation available for adaptation. Using amphibians to investigate post-glacial range expansion is advantageous, as they have limited dispersal abilities revealing fine-scale patterns and they are thought to be one of the first vertebrates to colonize post-glacial habitat. Therefore, to model the phylogeography of a primary colonizer and the population structure of anurans in northern landscapes, population genetics analyses of wood frogs (Lithobates sylvaticus) were performed in the James Bay area. Wood frogs were sampled from 17 localities around James Bay and genetic analyses were conducted with seven microsatellite loci and mitochondrial DNA sequences of the ND2/tRNATRP genes. Results show that the post-glacial recolonization of the James Bay area by wood frogs originated from the putative refugium in western Wisconsin, an area known as the Driftless Area. Two routes were taken by founders to colonize the James Bay area: one north-west of Lake Superior, colonizing western Ontario, and one through the Upper Peninsula of Michigan, colonizing southern and eastern Ontario and western Québec. Interestingly, the meeting of the two lineages south-west of James Bay led to the establishment of a zone of higher genetic variation than expected under the founder effect hypothesis. Additionally, population structure analyses revealed the segregation of three genetic populations east, north-west, and south-west of the bay, the latter showing the highest genetic variation and likely representing a zone of secondary contact. This study shows that past events such as post-glacial range expansions can explain present patterns of genetic variation and population structure, and that studies in northern landscapes may be very useful in understanding genetic patterns throughout the range of a species.
2

Movin' & Groovin' Salamanders: Conservation Implications of Large Scales and Quirky Sex

Charney, Noah D 13 May 2011 (has links)
Mole salamanders (Ambystoma) and woodfrogs (Lithobates sylvaticus) are abundant in New England and depend on ephemeral wetlands for breeding. Their aquatic habitats have been well studied and are protected by several local and regional regulations. State endangered species laws also protect mabled salamanders (A. opacum), Jefferson salamanders (A. jeffersonianum), and blue-spotted salamanders (A. laterale). However, these amphbibians spend most of their adult lives in terrestrial habitats that remain poorly protected and elusive to researchers. In chapter 1, I developed a novel technique using passive integrated transponders for tracking small animals. I used this technique to track marbled salamanders walking up to 200 m from their breeding pond during post-breeding migrations. In Chapter 2, I examined the importance of multiple habitat variables for predicting the distributions of woodfrogs and spotted salamanders at 455 ponds in western Massachusetts. Based on a variable-comparison technique I developed, the best predictor for either species of amphibian was the amount of forest in the surrounding vii landscape. Both species were found more frequently in upland forests where the ponds are least protected by state and federal wetland regulations. In chapter 3, I used my data from chapter 2 and three other similar data sets to conduct an analysis of spatial scale and to parameterize a recently published resistant kernel model. The complex model parameterized by an expert panel did significantly worse than the null model. The distributions of both amphibians were best predicted by measuring the landscape at very large scales (over 1000 m). The most effective scales for conservation may be largest for organisms of intermediate dispersal capability. In chapter 4, I explored the evolution and genetics of the Jefferson/blue-spotted/unisexual salamander complex. I framed research into the fascinating unisexual reproductive system with a model that relates nuclear genome replacement, positive selection on hybrids, and biogeography of the species complex. I parameterized this model using genetic data taken from salamanders spanning Massachusetts and an individual-based breeding simulation. If paternal genomes are transmitted to offspring with the frequencies reported from laboratory experiments, then my model suggests that there must be strong selection favoring unisexuals with hybrid nuclei.
3

The Effects of Glyphosate-based Herbicides on the Development of Wood Frogs, Lithobates sylvaticus

Lanctôt, Chantal 19 September 2012 (has links)
Amphibians develop in aquatic environments where they are very susceptible to the effects of pesticides and other environmental contaminants. Glyphosate-based herbicides are widely used and have been shown to affect survival and development of tadpoles under laboratory conditions. The goal my thesis is to determine if agriculturally relevant exposure to Roundup WeatherMax®, a herbicide formulation containing the potassium salt of glyphosate and an undisclosed surfactant, influences the survival and development of wood frogs tadpoles (Lithobates sylvaticus) under both laboratory and field conditions. In the field, experimental wetlands were divided in half using an impermeable curtain so that each wetland contained a treatment and control side. Tadpoles were exposed to two pulses of this herbicide at environmentally realistic concentration (ERC, 0.21 mg acid equivalent (a.e.)/L) and predicted environmental concentrations (PEC, 2.89 mg a.e./L), after which survival, growth, development, and expression of genes involved in metamorphosis were measured. Results indicate that exposure to the PEC is extremely toxic to tadpoles under laboratory conditions but not under field conditions. Results from both experimental conditions show sublethal effects on growth and development, and demonstrate that ERC of glyphosate-based herbicides have the potential to alter hormonal responses during metamorphosis. My secondary objectives were to compare the effects of Roundup WeatherMax® to the well-studied Vision® formulation (containing the isopropylamine (IPA) salt of glyphosate and POEA), and to determine which ingredient(s) are responsible for the sublethal effects on development. Survival, growth and gene expression results indicate that Roundup WeatherMax® has greater toxicity than Vision® formulation. Contrary to my prediction, results suggest that, under realistic exposure scenarios, POEA is not the sole ingredient responsible for the observed developmental effects. However, my results demonstrate that chronic exposure to the POEA surfactant at the PEC (1.43 mg/L) is extremely toxic to wood frog tadpoles in laboratory. As part of the Long-term Experimental Wetlands Area (LEWA) project, this research contributes to overall knowledge of the impacts of glyphosate-based herbicides on aquatic communities.
4

The Effects of Glyphosate-based Herbicides on the Development of Wood Frogs, Lithobates sylvaticus

Lanctôt, Chantal 19 September 2012 (has links)
Amphibians develop in aquatic environments where they are very susceptible to the effects of pesticides and other environmental contaminants. Glyphosate-based herbicides are widely used and have been shown to affect survival and development of tadpoles under laboratory conditions. The goal my thesis is to determine if agriculturally relevant exposure to Roundup WeatherMax®, a herbicide formulation containing the potassium salt of glyphosate and an undisclosed surfactant, influences the survival and development of wood frogs tadpoles (Lithobates sylvaticus) under both laboratory and field conditions. In the field, experimental wetlands were divided in half using an impermeable curtain so that each wetland contained a treatment and control side. Tadpoles were exposed to two pulses of this herbicide at environmentally realistic concentration (ERC, 0.21 mg acid equivalent (a.e.)/L) and predicted environmental concentrations (PEC, 2.89 mg a.e./L), after which survival, growth, development, and expression of genes involved in metamorphosis were measured. Results indicate that exposure to the PEC is extremely toxic to tadpoles under laboratory conditions but not under field conditions. Results from both experimental conditions show sublethal effects on growth and development, and demonstrate that ERC of glyphosate-based herbicides have the potential to alter hormonal responses during metamorphosis. My secondary objectives were to compare the effects of Roundup WeatherMax® to the well-studied Vision® formulation (containing the isopropylamine (IPA) salt of glyphosate and POEA), and to determine which ingredient(s) are responsible for the sublethal effects on development. Survival, growth and gene expression results indicate that Roundup WeatherMax® has greater toxicity than Vision® formulation. Contrary to my prediction, results suggest that, under realistic exposure scenarios, POEA is not the sole ingredient responsible for the observed developmental effects. However, my results demonstrate that chronic exposure to the POEA surfactant at the PEC (1.43 mg/L) is extremely toxic to wood frog tadpoles in laboratory. As part of the Long-term Experimental Wetlands Area (LEWA) project, this research contributes to overall knowledge of the impacts of glyphosate-based herbicides on aquatic communities.
5

The Effects of Glyphosate-based Herbicides on the Development of Wood Frogs, Lithobates sylvaticus

Lanctôt, Chantal January 2012 (has links)
Amphibians develop in aquatic environments where they are very susceptible to the effects of pesticides and other environmental contaminants. Glyphosate-based herbicides are widely used and have been shown to affect survival and development of tadpoles under laboratory conditions. The goal my thesis is to determine if agriculturally relevant exposure to Roundup WeatherMax®, a herbicide formulation containing the potassium salt of glyphosate and an undisclosed surfactant, influences the survival and development of wood frogs tadpoles (Lithobates sylvaticus) under both laboratory and field conditions. In the field, experimental wetlands were divided in half using an impermeable curtain so that each wetland contained a treatment and control side. Tadpoles were exposed to two pulses of this herbicide at environmentally realistic concentration (ERC, 0.21 mg acid equivalent (a.e.)/L) and predicted environmental concentrations (PEC, 2.89 mg a.e./L), after which survival, growth, development, and expression of genes involved in metamorphosis were measured. Results indicate that exposure to the PEC is extremely toxic to tadpoles under laboratory conditions but not under field conditions. Results from both experimental conditions show sublethal effects on growth and development, and demonstrate that ERC of glyphosate-based herbicides have the potential to alter hormonal responses during metamorphosis. My secondary objectives were to compare the effects of Roundup WeatherMax® to the well-studied Vision® formulation (containing the isopropylamine (IPA) salt of glyphosate and POEA), and to determine which ingredient(s) are responsible for the sublethal effects on development. Survival, growth and gene expression results indicate that Roundup WeatherMax® has greater toxicity than Vision® formulation. Contrary to my prediction, results suggest that, under realistic exposure scenarios, POEA is not the sole ingredient responsible for the observed developmental effects. However, my results demonstrate that chronic exposure to the POEA surfactant at the PEC (1.43 mg/L) is extremely toxic to wood frog tadpoles in laboratory. As part of the Long-term Experimental Wetlands Area (LEWA) project, this research contributes to overall knowledge of the impacts of glyphosate-based herbicides on aquatic communities.
6

Applying Ecological Theory to Amphibian Populations to Determine if Wood Frogs (Lithobates sylvaticus) are Ideal and Free when Selecting Breeding Habitat

Braunagel, Taylor M 02 April 2021 (has links)
Amphibian populations are declining globally due to a litany of factors including pollution, disease, climate change, and most importantly, habitat destruction. As most amphibian life histories involve their populations being recruitment limited, focusing on the mechanism behind breeding habitat selection will reveal useful cues that managers may use to increase abundance and breeding success. Though there are many theoretical models that describe the distribution of animals in response to a resource, the ideal free distribution (IFD) theory has not yet been applied to amphibian settling decisions. Through this application of the IFD, I have found that a population of wood frogs (Lithobates sylvaticus) in Patuxent National Wildlife Refuge select vernal pools that are large, deep, and hold water into the summer months to breed from 2010-2015. This information will provide managers with the ability to predict sites where wood frogs will breed in the future, as well as describe the cues that wood frogs are cueing in on so we can protect, alter, or create ideal breeding habitat.
7

Upland forest leaf litter: Effects on growth and development of Lithobates sylvaticus tadpoles

Kitson, Sarah R. 09 May 2013 (has links)
No description available.

Page generated in 0.3854 seconds