• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variações da estrutura da crosta, litosfera e manto para a plataforma Sul Americana através de funções do receptor para ondas P e S / Variations in the crustal, lithosphere and mantle structure for the South American platform using P- and S-waves receiver functions

Bianchi, Marcelo Belentani de 29 August 2008 (has links)
Utilizamos neste trabalho duas metodologias distintas, a função do receptor com ondas P e a função do receptor com ondas S, para mapear variações da crosta e interfaces do manto (litosfera-astenosfera, 410 km e 660 km) em diferentes estações sismográficas na placa Sul-Americana. No estudo da interface litosfera-astenosfera, por ser o primeiro realizado nesta região, utilizamos as estações temporárias do IAG/USP em conjunto com as estações permanentes da rede mundial cobrindo toda a placa Sul-Americana. O estudo para as outras interfaces (Crosta-Manto, 410 km e 660 km) foi feito com caráter regional, buscando detalhar características da crosta e manto na região estável da placa. Para ambos os métodos os traços (sismogramas) foram rotacionados para o sistema LQT, deconvolvidos, agrupados por pontos de perfuração e por estações, e finalmente empilhados. Nos traços empilhados as fases convertidas de interesse (Ps, Ppps, Ppss+Psps e Sp) foram identificadas e interpretadas. Para a parte estável da placa obtivemos um valor médio de espessura da crosta de 39.4±0.6 km, variando desde 31.0±0.5 km para a província Borborema, até 41.3±1.0 km para a bacia do Paraná, onde aplicamos uma correção para descontar o efeito do sedimento. A razão de velocidade para a crosta, Vp/Vs, apresentou valores mais altos para a bacia do Paraná (~1.75±0.08) e região litorânea oriental (>1.74), enquanto que as regiões cratônicas (cráton São Francisco e Amazônico) apresentaram valores de Vp/Vs baixos (<1.72), chegando até 1.68. O valor médio de Vp/Vs para todas as estações analisadas foi de 1.73±0.02. As variações dos tempos para as interfaces do manto mostraram boa correlação com resultados de tomografia sísmica de outros trabalhos, indicando alterações de até 5% na velocidade das ondas sísmicas para o manto superior sob os crátons, uma deflexão de até 15 km na interface de 660 km para a região Sul da bacia do Paraná e se mostraram bem correlacionadas com as médias globais para as outras região estudadas. Por fim, a espessura da litosfera apresentou valores desde ~40 km, sob as regiões de ilhas oceânicas, até ~160 km, sob as regiões mais estáveis. Para as regiões oceânicas a espessura da litosfera se mostra correlacionada com a idade da placa. À medida que adentramos a parte continental, o limite litosfera-astenosfera se torna menos proeminente, atingindo profundidades maiores no interior dos continentes e menores para as regiões marginais. Para a zona de subducção, observamos duas possíveis litosferas, uma oceânica, subduzindo junto com a placa de Nazca, e outra pertencente à parte continental. / Two distinct methodologies, the P- and S-wave receiver functions, are used to map variations in the crustal parameters (thickness and Vp/Vs) and mantle interfaces (lithosphere-asthenosphere, 410 km and 660 km) on a number of different seismograph stations located in the South American plate. The results of the S receiver function for the lithosphere-asthenosphere boundary are the first of this kind ever performed in South American continent and showed the large scale variations of this interface. To perform this study we analyze data from various global permanent stations together with all available data from temporary stations operated by the IAG/USP during the last15 years. For both methods the traces (seismograms) were rotated to the LQT system, deconvolved, grouped by piercing points and stations, and finally stacked. In the stacked traces, the converted phases (Ps, Ppps, Ppss+Psps and Sp) were identified and interpreted. Inside the stable part of the plate we found a mean crustal thickness of 39.4±0.6 km, ranging from 31.0±0.5 km in Borborema Province up to 41.3±1.0 km in the Paraná Basin, where we applied a correction to remove the sediment effects on the crustal estimates. The crustal velocity ratios, Vp/Vs, showed higher values for the Paraná Basin (~1.75±0.08) and Ribeira belt (>1.74), while the cratonic regions (São Francisco and Amazon cratons) showed low values of Vp/Vs (<1.72), down to 1.68. The average Vp/Vs obtained for all stations was equal to 1.73±0.02. The observed times of the converted mantle phases presented a good correlation with other tomographic studies, indicating that the upper mantle for the cratonic roots may be characterized by a variation up to 5% in seismic velocities, a 15 km deflection in the South Paraná 660 km discontinuity (probably due to a decreased temperature caused by the subducted slab); for other regions the converted times were close to the global average. As a final result, the lithospheric thickness presented values ranging from ~40 km under oceanic islands, to ~160 km under the stable continental regions. We found that for the oceanic islands the thickness of the lithosphere is correlated with the age of the plate. When we go further inside the continents, the lithosphere-asthenosphere boundary becomes less sharp, reaching larger depths inside the continents and shallower depths near the continental margin. In the Andean subduction area, we observed two possibles lithospheres, one oceanic, subducting together with the Nazca plate, and another belonging to the Continent, parallel to the crust interface.
2

Geophysical constraints on mantle viscosity and its influence on Antarctic glacial isostatic adjustment

Darlington, Andrea 29 May 2012 (has links)
Glacial isostatic adjustment (GIA) is the process by which the solid Earth responds to past and present-day changes in glaciers, ice caps, and ice sheets. This thesis focuses on vertical crustal motion of the Earth caused by GIA, which is influenced by several factors including lithosphere thickness, mantle viscosity profile, and changes to the thickness and extent of surface ice. The viscosity of the mantle beneath Antarctica is a poorly constrained quantity due to the rarity of relative sea-level and heat flow observations. Other methods for obtaining a better-constrained mantle viscosity model must be investigated to obtain more accurate GIA model predictions. The first section of this study uses seismic wave tomography to determine mantle viscosity. By calculating the deviation of the P- and S-wave velocities relative to a reference Earth model (PREM), the viscosity can be determined. For Antarctica mantle viscosities obtained from S20A (Ekstrom and Dziewonski, 1998) seismic tomography in the asthenosphere range from 1016 Pa∙s to 1023 Pa∙s, with smaller viscosities beneath West Antarctica and higher viscosities beneath East Antarctica. This agrees with viscosity expectations based on findings from the Basin and Range area of North America, which is an analogue to the West Antarctic Rift System. Section two compares bedrock elevations in Antarctica to crustal thicknesses, to infer mantle temperatures and draw conclusions about mantle viscosity. Data from CRUST 2.0 (Bassin et al., 2000), BEDMAP (Lythe and Vaughan, 2001) and specific studies of crustal thickness in Antarctica were examined. It was found that the regions of Antarctica that are expected to have low viscosities agree with the hot mantle trend found by Hyndman (2010) while the regions expected to have high viscosity are in better agreement with the trend for cold mantle. Bevis et al. (2009) described new GPS observations of crustal uplift in Antarctica and compared the results to GIA model predictions, including IJ05 (Ivins and James, 2005). Here, we have generated IJ05 predictions for a three layered mantle (viscosities ranging over more than four orders of magnitude) and compared them to the GPS observations using a χ2 measure of goodness-of-fit. The IJ05 predictions that agree best with the Bevis et al. observations have a χ2 of 16, less than the null hypothesis value of 42. These large values for the best-fit model indicate the need for model revisions and/or that uncertainties are too optimistic. Equally important, the mantle viscosities of the best-fit models are much higher than expected for West Antarctica. The smallest χ2 values are found for an asthenosphere viscosity of 1021 Pa•s, transition zone viscosity of 1023 Pa∙s and lower mantle viscosity of 2 x 1023 Pa∙s, whereas the expected viscosity of the asthenosphere beneath West Antarctica is probably less than 1020 Pa∙s. This suggests that revisions to the IJ05 ice sheet history are required. Simulated annealing was performed on the ice sheet history and it was found that changes to the recent ice load history have the strongest effect on GIA predictions. / Graduate
3

Variações da estrutura da crosta, litosfera e manto para a plataforma Sul Americana através de funções do receptor para ondas P e S / Variations in the crustal, lithosphere and mantle structure for the South American platform using P- and S-waves receiver functions

Marcelo Belentani de Bianchi 29 August 2008 (has links)
Utilizamos neste trabalho duas metodologias distintas, a função do receptor com ondas P e a função do receptor com ondas S, para mapear variações da crosta e interfaces do manto (litosfera-astenosfera, 410 km e 660 km) em diferentes estações sismográficas na placa Sul-Americana. No estudo da interface litosfera-astenosfera, por ser o primeiro realizado nesta região, utilizamos as estações temporárias do IAG/USP em conjunto com as estações permanentes da rede mundial cobrindo toda a placa Sul-Americana. O estudo para as outras interfaces (Crosta-Manto, 410 km e 660 km) foi feito com caráter regional, buscando detalhar características da crosta e manto na região estável da placa. Para ambos os métodos os traços (sismogramas) foram rotacionados para o sistema LQT, deconvolvidos, agrupados por pontos de perfuração e por estações, e finalmente empilhados. Nos traços empilhados as fases convertidas de interesse (Ps, Ppps, Ppss+Psps e Sp) foram identificadas e interpretadas. Para a parte estável da placa obtivemos um valor médio de espessura da crosta de 39.4±0.6 km, variando desde 31.0±0.5 km para a província Borborema, até 41.3±1.0 km para a bacia do Paraná, onde aplicamos uma correção para descontar o efeito do sedimento. A razão de velocidade para a crosta, Vp/Vs, apresentou valores mais altos para a bacia do Paraná (~1.75±0.08) e região litorânea oriental (>1.74), enquanto que as regiões cratônicas (cráton São Francisco e Amazônico) apresentaram valores de Vp/Vs baixos (<1.72), chegando até 1.68. O valor médio de Vp/Vs para todas as estações analisadas foi de 1.73±0.02. As variações dos tempos para as interfaces do manto mostraram boa correlação com resultados de tomografia sísmica de outros trabalhos, indicando alterações de até 5% na velocidade das ondas sísmicas para o manto superior sob os crátons, uma deflexão de até 15 km na interface de 660 km para a região Sul da bacia do Paraná e se mostraram bem correlacionadas com as médias globais para as outras região estudadas. Por fim, a espessura da litosfera apresentou valores desde ~40 km, sob as regiões de ilhas oceânicas, até ~160 km, sob as regiões mais estáveis. Para as regiões oceânicas a espessura da litosfera se mostra correlacionada com a idade da placa. À medida que adentramos a parte continental, o limite litosfera-astenosfera se torna menos proeminente, atingindo profundidades maiores no interior dos continentes e menores para as regiões marginais. Para a zona de subducção, observamos duas possíveis litosferas, uma oceânica, subduzindo junto com a placa de Nazca, e outra pertencente à parte continental. / Two distinct methodologies, the P- and S-wave receiver functions, are used to map variations in the crustal parameters (thickness and Vp/Vs) and mantle interfaces (lithosphere-asthenosphere, 410 km and 660 km) on a number of different seismograph stations located in the South American plate. The results of the S receiver function for the lithosphere-asthenosphere boundary are the first of this kind ever performed in South American continent and showed the large scale variations of this interface. To perform this study we analyze data from various global permanent stations together with all available data from temporary stations operated by the IAG/USP during the last15 years. For both methods the traces (seismograms) were rotated to the LQT system, deconvolved, grouped by piercing points and stations, and finally stacked. In the stacked traces, the converted phases (Ps, Ppps, Ppss+Psps and Sp) were identified and interpreted. Inside the stable part of the plate we found a mean crustal thickness of 39.4±0.6 km, ranging from 31.0±0.5 km in Borborema Province up to 41.3±1.0 km in the Paraná Basin, where we applied a correction to remove the sediment effects on the crustal estimates. The crustal velocity ratios, Vp/Vs, showed higher values for the Paraná Basin (~1.75±0.08) and Ribeira belt (>1.74), while the cratonic regions (São Francisco and Amazon cratons) showed low values of Vp/Vs (<1.72), down to 1.68. The average Vp/Vs obtained for all stations was equal to 1.73±0.02. The observed times of the converted mantle phases presented a good correlation with other tomographic studies, indicating that the upper mantle for the cratonic roots may be characterized by a variation up to 5% in seismic velocities, a 15 km deflection in the South Paraná 660 km discontinuity (probably due to a decreased temperature caused by the subducted slab); for other regions the converted times were close to the global average. As a final result, the lithospheric thickness presented values ranging from ~40 km under oceanic islands, to ~160 km under the stable continental regions. We found that for the oceanic islands the thickness of the lithosphere is correlated with the age of the plate. When we go further inside the continents, the lithosphere-asthenosphere boundary becomes less sharp, reaching larger depths inside the continents and shallower depths near the continental margin. In the Andean subduction area, we observed two possibles lithospheres, one oceanic, subducting together with the Nazca plate, and another belonging to the Continent, parallel to the crust interface.

Page generated in 0.0742 seconds