• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mitigation of Ammonia Emissions from Broiler Houses Using a Biodegradable Litter Amendment

Senyondo, Namanda Sara 06 May 2013 (has links)
Broilers are raised indoors on high density farms with bedding/litter to trap their manure. Ammonia gas, which is produced as the manure decomposes, has adverse effects on human health, bird welfare and the environment. Using litter amendments can reduce the amount and, consequently, the effects of ammonia emitted from broiler houses. The objective of this study was to determine the effectiveness of a biodegradable litter amendment (BLA) in reducing ammonia emitted from a broiler house. A pilot scale test was set up with six adjacent, individually ventilated rooms and a stocking density of 0.07 m² per bird. The birds were fed with a standard commercial, corn and soybean meal based diet and water was provided ad libitum. The first flock was grown on 10 cm of fresh, kiln-dried pine shavings, while subsequent flocks were grown on top-dressed reused litter. The two treatments (control (CTL) and BLA) were randomly assigned to the six rooms after flock 1, to give three replicates per treatment. The exhaust air from the rooms was sampled for ammonia concentration for two days each week starting at four days of age to determine the amount of ammonia emitted. Over three subsequent flocks, the total mass of ammonia emitted from rooms treated with BLA was 31% to 47% lower than the control. Ammonia emitted per bird grown on treated litter and per kg of harvested bird weight was 32% to 44% lower, and the exhaust fans ran 7% to 22% less than CTL over the same period. For both BLA and CTL, the amount of ammonia emitted generally increased with bird age and litter reuse. The study showed that BLA effectively reduced ammonia emitted from a broiler house and that there are potential energy savings from using the amendment. However, ammonia emitted from the BLA rooms during the final flock was 57% higher than CTL, which was attributed to insufficient water (less than 18% moisture by weight) to support the reaction between BLA and ammonia. / Ph. D.
2

Influence of a Biodegradable Litter Amendment on the Pyrolysis of Poultry Litter

Tarrant, Ryan Carl Allen 02 November 2010 (has links)
The effects of adding a biodegradable litter amendment (AmmoSoak), developed from steam exploded corncobs, to poultry litter prior to pyrolysis on the product yields and qualities were investigated. Mixtures of litter and AmmoSoak were pyrolyzed in a bench-scale fluidized bed reactor. The objective of the second phase was to start-up a pilot-scale fluidized bed reactor unit. The poultry litter had a lower higher heating value (HHV), higher moisture, ash, nitrogen, sulfur, and chlorine contents than AmmoSoak. Analysis of the poultry litter indicated a mixture of volatiles, hemicelluloses, cellulose, lignin, ash, and proteins. AmmoSoak had a simpler composition than the litter; mainly hemicelluloses, cellulose, and lignin. Bench-scale studies indicated that adding AmmoSoak affected the yields and characteristics of the products. Addition of Ammosoak increased the bio-oil and syngas yields and decreased char yields. Adding AmmoSoak to the feed decreased the pH, water contents, initial viscosity, and the rate at which the viscosity increased with time, while densities and HHVs increased. The addition of Ammosoak to poultry litter also increased the carbon and oxygen contents of the boi-oils while nitrogen, hydrogen, sulfur, chlorine and ash contents decreased. A pilot-scale fluidized bed reactor was designed, constructed, installed and investigated for the pyrolysis of poultry litter. Fluidization and thermal equilibrium of the reactor were successfully demonstrated. The reactor was heated by combustion of propane. To ensure complete combustion, the combustion water was collected and compared to the stoichiometric yield. Complete combustion was achieved. Bio-oil yields on the pilot scale were lower than those obtained on the bench-scale pyrolysis unit. The water soluble fractions of the bio-oils were rich in oxygen. Water insoluble fractions were rich in carbon and ash. / Master of Science

Page generated in 0.0841 seconds