• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constructing Simultaneous Diophantine Approximations Of Certain Cubic Numbers

Hinkel, Dustin January 2014 (has links)
For K a cubic field with only one real embedding and α, β ϵ K, we show how to construct an increasing sequence {m_n} of positive integers and a subsequence {ψ_n} such that (for some constructible constants γ₁, γ₂ > 0): max{ǁm_nαǁ,ǁm_nβǁ} < [(γ₁)/(m_n^(¹/²))] and ǁψ_nαǁ < γ₂/[ψ_n^(¹/²) log ψ_n] for all n. As a consequence, we have ψ_nǁψ_nαǁǁψ_nβǁ < [(γ₁ γ₂)/(log ψ_n)] for all n, thus giving an effective proof of Littlewood's conjecture for the pair (α, β). Our proofs are elementary and use only standard results from algebraic number theory and the theory of continued fractions.

Page generated in 0.05 seconds