• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relating Inter-Agent and Intra-Agent Specifications (The Case of Live Sequence Charts)

Bontemps, Yves 20 April 2005 (has links)
The problem of relating inter-agent and intra-agent behavioral specifications is investigated. These two views are complimentary, in that the former is closer to scenario-based user requirements whereas the latter is design-oriented. We use a graphical, user-friendly and very simple language as inter-agent specification language: Live Sequence Charts (LSC). LSC is presented and its properties are investigated: it is highly succinct, but inexpressive. There are essentially two ways to relate inter-agent and intra-agent specifications: (i) by checking that an intra-agent specification is correct with respect to some LSC specification and (ii) by automatically building an intra-agent specification from an LSC specification. Several variants of these problems exist: closed/open systems and centralized/distributed systems. We give inefficient but optimal algorithms solving all problems, besides synthesis of open distributed systems, which we show is undecidable. All the problems considered are difficult, even for a very restricted subset of LSCs, without alternatives, interleaving, conditions nor loops. We investigate the cost of extending the language with control flow constructs, conditions, real-time and symbolic instances. An implementation of the algorithms is proposed. The applicability of the language is illustrated on a real-world case study.
2

Evaluation of Live Sequence Charts Using Play Engine Tool / Evaluation of Live Sequence Charts Using Play Engine Tool

Gopidi, Vijay Kumar January 2005 (has links)
Capturing a requirement is a great challenge in the initial stages of the software development, be it a system requirement or a customer requirement to the software engineers. Understanding the requirement and predicting or differentiating what may happen and what must happen is difficult especially in the complex real time systems. Live sequence charts are extensions of the message sequence charts which can specify the live ness of the requirements. And the play engine tool is used to specify, validate, and analyze the scenarios of the requirements. This thesis is to evaluate live sequence charts using the play engine tool and to see if the built-in model checkers can detect inconsistencies in the LSC’s. / The requirements capturing and analysis has always been the initial criteria and main problem during the software design and development for the software engineers. It’s been very common to use natural language for capturing the requirements in the industries because of its ease of use. The graphical languages were used to represent the requirements, its behavior and the scenarios graphically or visually, for example UML. UML Sequence diagrams are used in the real time software development to capture the requirements which specifies the scenarios of the system behavior and also the interactions between the objects graphically. Message sequence charts are also a graphical language for representing the scenarios and also the behavior of the system especially in the telecommunication domain. But these two are only useful in specifying the one aspect of the behavior and not much helpful in specifying the liveness of the requirement. Liveness can be defined as something good will happen [34] or something must happen. For this reason live sequence charts were developed which can specify the liveness of the requirement. Live sequence charts are capable of specifying the scenarios what may happen and what must happen. This thesis is to evaluate the live sequence charts using the play engine tool running on the windows machine and also to study the built in model checkers for formal verification. The thesis starts with the various types of graphical representation of requirements in Software Engineering, followed by the Research Methodology, next a bit more explanation of Live Sequence Charts, Evaluation, Result, Conclusions and Lessons Learned from the thesis. / Permanent Address: C/O: K.VIJAYA H.NO. 3-1-39/12/3/2 TEACHER'S COLONY ARMOOR-503224 ANDHRAPRADESH INDIA.
3

Model-based Code Generation For The High Level Architecture Federates

Adak, Bulent Mehmet 01 December 2007 (has links) (PDF)
We tackle the problem of automated code generation for a High Level Architecture (HLA)- compliant federate application, given a model of the federation architecture including the federate&rsquo / s behavior model. The behavior model is based on Live Sequence Charts (LSCs), adopted as the behavioral specification formalism in the Federation Architecture Metamodel (FAMM). The FAMM is constructed conforming to metaGME, the meta-metamodel offered by Generic Modeling Environment (GME). FAMM serves as a formal language for describing federation architectures. We present a code generator that generates Java/AspectJ code directly from a federation architecture model. An objective is to help verify a federation architecture by testing it early in the development lifecycle. Another objective is to help developers construct complete federate applications. Our approach to achieve these objectives is aspect-oriented in that the code generated from the LSC in conjunction with the Federation Object Model (FOM) serves as the base code on which the computation logic is weaved as an aspect.
4

Metamodeling For The Hla Federation Architectures

Topcu, Okan 01 December 2007 (has links) (PDF)
This study proposes a metamodel, named Federation Architecture Metamodel (FAMM), for describing the architecture of a High Level Architecture (HLA) compliant federation. The metamodel provides a domain specific language and a formal representation for the federation adopting Domain Specific Metamodeling approach to HLA-compliant federations. The metamodel supports the definitions of transformations both as source and as target. Specifically, it supports federate base code generation from a described federate behavior, and it supports transformations from a simulation conceptual model. A salient feature of FAMM is the behavioral description of federates based on live sequence charts (LSCs). It is formulated in metaGME, the meta-metamodel for the Generic Modeling Environment (GME). This thesis discusses specifically the following points: the approach to building the metamodel, metamodel extension from Message Sequence Chart (MSC) to LSC, support for model-based code generation, and action model and domain-specific data model integration. Lastly, this thesis presents, through a series of modeling case studies, the Federation Architecture Modeling Environment (FAME), which is a domain-specific model-building environment provided by GME once FAMM is invoked as the base paradigm.

Page generated in 0.0656 seconds