• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of microRNAs in hepatocellular carcinoma. / CUHK electronic theses & dissertations collection

January 2013 (has links)
MicroRNA(miRNAs)是一類細小的非編碼RNA(ncRNA),能透過轉錄後機制調節靶標基因的表達。miRNA的發現,不僅提出一個嶄新的基因調節機制,更強調了小ncRNA於不同的生理和發展過程中的重要性。最近的研究更進一步展示了miRNA失調與癌症發展之間的因果關係。 / 我們此前曾利用陣列分析,發現miRNA在肝細胞癌(HCC)中的失調模式,揭示了miR-145在HCC的普遍下調。在本論文的第一部分,定量逆轉錄聚合酶鏈反應(qRT-PCR)進一步證實了miR-145在50的肝細胞癌患者(n=80)的腫瘤中出現表達下調,而且miR-145的表達下調更與較短的无病生存期相關。其中一個低內源性miR-145的肝癌腫瘤樣本被建立為細胞株─HKCI-C2。此體外模型保持低miR-145水平,並於恢復miR-145表達後,抑製細胞存活和增殖。多個計算機演算法均預測了miR-145可針對胰島素樣生長因子(IGF)信號通路中的多個基因,包括胰島素受體底物(IRS1)-1,IRS2和胰島素樣生長因子1受體。這些假定目標的蛋白表達亦被miR-145下調。熒光素酶檢測進一步驗證了miR-145和IRS1/IRS2 3'-非編碼區的直接目標關聯。隨後的分析也確定miR-145能下調 IGF信號通路下游的信號傳導,即活性β-catenin水平。 / 最近出現的深度測序技術,為研究miRNome提供了一個前所未有的平台,以識別已知和新的miRNA。此外,現代生物信息學技術可同時對不同類型的小ncRNA,如PIWI-interacting RNA(piRNAs)進行分析。在本論文的第二部分中,我們利用Illumina大規模並行測序對兩個肝癌細胞株(HKCI-4和HKCI-8)和正常肝細胞株(MIHA)的小RNA轉錄組進行研究。生物信息學和生物功能分析揭示一種新型piRNA(取名為piR-Hep1)在肝腫瘤發生中的重要角色。在73例肝癌中,qRT-PCR結果顯示piR-Hep1在47的肝癌組織出現上調。PiR-Hep1的沉默能抑制肝癌細胞存活、遷移和侵襲,同時亦減少了Akt的磷酸化。在miRNA的分析中,miR-1323被發現在肝癌組織中大量表達,並與肝硬化背景下產生的肝腫瘤相關。此外,miR-1323出現過表達的肝硬化肝癌患者的無病和整體存活率亦較差(P<0.009)。 / 總觀來說,本論文首次發現miR-145可同時抑制引致肝癌的IGF信號通路中的多個傳導因子,亦突出了piR-Hep1的功能重要性和miR-1323在肝癌患者中的預後意義。此外,本研究表明,傳統的陣列分析和新一代的測序技術均能發現重要的miRNA。新一代測序技術對轉錄組的全面分析,將對研究各種不同類型的ncRNAs在肝癌發生發展過程中的參與提供新的思路。 / MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNA) that post-transcriptionally regulate gene expression. The discovery of miRNAs not only puts forth an alternate gene regulatory mechanism, but also underscores the importance of small ncRNAs as pivotal regulators of diverse physiological and developmental processes. Recent studies have emphasized a causal link between miRNA deregulation and cancer development. / Our group has previously reported on dysregulated miRNA pattern in hepatocellular carcinoma (HCC) by array-based profiling, which revealed common downregulation of miR-145. In the first part of this thesis, quantitative reverse transcription polymerase chain reaction (qRT-PCR) corroborated reduced miR-145 expression in 50% of tumors in a cohort of 80 HCC patients, which also correlated reduced miR-145 expression with shorter disease-free survival of patients. One HCC tumor analyzed with low endogenous miR-145 was propagated as cell line. This in vitro model HKCI-C2 maintained low miR-145 level and upon restoration of miR-145 expression, a consistent inhibitory effect on cell viability and proliferation was readily observed. Multiple in silico algorithms predicted that miR-145 could target a number of genes along the insulin-like growth factor (IGF) signaling, including insulin receptor substrate (IRS1)-1, IRS2 and insulin-like growth factor 1 receptor. Protein expression of these putative targets was concordantly downregulated in the presence of miR-145. Luciferase reporter assay further verified direct target association of miR-145 to specific sites of IRS1 and IRS2 3’-untranslated regions. Subsequent analysis also affirmed the modulation of IGF signaling cascade by miR-145 as evident by reduction of the downstream mediator, namely, the active β-catenin level. / The recent advent of deep sequencing has provided an unprecedented platform to study the miRNome, in which both known and novel miRNAs can be identified. Moreover, bioinformatics advances have enabled different types of small ncRNAs, e.g. piwi-interacting RNAs (piRNAs), to be analyzed simultaneously. In the second part of this thesis, small RNA transcriptomes of two HCC cell lines (HKCI-4 and HKCI-8) and an immortalized hepatocyte line (MIHA) were examined using Illumina massively parallel sequencing. Combined bioinformatic and biological analyses revealed the involvement of a novel piRNA, designated as piR-Hep1, in liver tumorigenesis. piR-Hep1 was found to be up-regulated in 47% of HCC in a cohort of 73 HCC patients by qRT-PCR. Silencing of piR-Hep1 inhibited cell viability, motility and invasiveness with a concomitant reduction of Akt phosphorylation. In the analysis of miRNA, miR-1323 was found to be abundantly expressed in HCC and distinctly associated with tumors arising from a cirrhotic background. Furthermore, miR-1323 overexpression in cirrhotic-HCC correlated with poorer disease-free and overall survivals of patients (P<0.009). / Taken together, results from this thesis showed for the first time the pleiotropic effect of miR-145 on targeting multiple components of the oncogenic IGF signaling pathway in HCC. In addition, the functional importance of piR-Hep1 and the prognostic significance of miR-1323 in HCC were highlighted. Studies conducted demonstrated that important miRNAs can be discovered by both traditional array-based profiling and next-generation sequencing. Moreover, comprehensive definition of transcriptome by next-generation sequencing unveils virtually all types of ncRNAs and provides new insight into the liver carcinogenic events. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Law, Tak Yin. / "December 2012." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 180-200). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstracts also in Chinese. / Acknowledgements --- p.i / Publications --- p.ii / Abstract --- p.iii / 摘要 --- p.vi / Contents --- p.viii / List of Figures --- p.xiii / List of Tables --- p.xv / Abbreviations --- p.xvi / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Hepatocellular Carcinoma - One of the world’s most deadly killers --- p.2 / Chapter 1.2 --- MicroRNAs - a tiny molecule with enormous impacts --- p.10 / Chapter 1.2.1 --- Discovery of miRNAs --- p.11 / Chapter 1.2.2 --- Biogenesis and actions of miRNA --- p.13 / Chapter 1.3 --- MiRNAs and cancer --- p.16 / Chapter 1.4 --- Involvements of miRNAs in HCC etiological factors --- p.18 / Chapter 1.4.1 --- Viral hepatitis infection --- p.19 / Chapter 1.4.2 --- Chronic heavy alcohol consumption --- p.26 / Chapter 1.4.3 --- Dietary aflatoxin exposure --- p.28 / Chapter 1.4.4 --- Male gender --- p.31 / Chapter 1.4.5 --- Obesity --- p.33 / Chapter 1.5 --- Regulation of cancer-associated signaling network by microRNAs --- p.34 / Chapter 1.5.1 --- Apoptotic pathway --- p.37 / Chapter 1.5.1.1 --- Intrinsic pathway --- p.38 / Chapter 1.5.1.2 --- Extrinsic pathway --- p.39 / Chapter 1.5.2 --- Cell cycle regulators --- p.41 / Chapter 1.5.2.1 --- G₁/S transition --- p.42 / Chapter 1.5.2.2 --- G₂/M transition --- p.43 / Chapter 1.5.3 --- Receptor tyrosine kinase-mediated pathways --- p.45 / Chapter 1.5.3.1 --- c-MET-activated signaling --- p.45 / Chapter 1.5.3.2 --- PI3K-Akt --- p.47 / Chapter 1.5.3.3 --- RAS-RAF-MEK-ERK cascade --- p.48 / Chapter 1.5.4 --- TGF-ß signaling pathways --- p.50 / Chapter 1.5.5 --- Metastatic pathways --- p.52 / Chapter 1.5.5.1 --- MiRNAs with metastatic suppressing effects --- p.52 / Chapter 1.5.5.2 --- MiRNAs with metastatic promoting effects --- p.53 / Chapter 1.6 --- Clinical potentials of microRNAs - a killer or a cure? --- p.56 / Chapter 1.6.1 --- MiRNAs involvements in HCC risk prediction --- p.57 / Chapter 1.6.2 --- MiRNAs as diagnostic biomarkers --- p.59 / Chapter 1.6.3 --- MiRNAs as prognostic biomarkers --- p.60 / Chapter 1.6.4 --- Effects of miRNAs on responses to therapy --- p.61 / Chapter 1.7 --- Non-coding RNAs --- p.62 / Chapter 1.8 --- Aims of study --- p.63 / Chapter 2 --- Materials and Methods --- p.65 / Chapter 2.1 --- Quantitative reverse transcription polymerase chain reaction (qRT-PCR) --- p.66 / Chapter 2.1.1 --- Materials --- p.66 / Chapter 2.1.1.1 --- Total RNA extraction --- p.66 / Chapter 2.1.1.2 --- DNase treatment --- p.66 / Chapter 2.1.1.3 --- Reverse transcription --- p.66 / Chapter 2.1.1.4 --- Quantitative polymerase chain reaction --- p.66 / Chapter 2.1.2 --- Methods --- p.67 / Chapter 2.1.2.1 --- Total RNA extraction --- p.67 / Chapter 2.1.2.2 --- DNase treatment --- p.68 / Chapter 2.1.2.3 --- Reverse transcription --- p.69 / Chapter 2.1.2.4 --- Quantitative polymerase chain reaction --- p.69 / Chapter 2.2 --- Transfection --- p.70 / Chapter 2.2.1 --- Materials --- p.70 / Chapter 2.2.2 --- Methods --- p.70 / Chapter 2.2.2.1 --- Evaluation of HCC cells transfection efficiency --- p.70 / Chapter 2.2.2.2 --- Transfection --- p.71 / Chapter 2.3 --- In vitro functional assay --- p.72 / Chapter 2.3.1 --- Materials --- p.72 / Chapter 2.3.1.1 --- Cell viability assay --- p.72 / Chapter 2.3.1.2 --- Colony formation assay --- p.72 / Chapter 2.3.1.3 --- Cell cycle analysis --- p.72 / Chapter 2.3.1.4 --- Apoptosis assay --- p.72 / Chapter 2.3.1.5 --- Cell motility and invasion assay --- p.73 / Chapter 2.3.2 --- Methods --- p.73 / Chapter 2.3.2.1 --- Cell viability assay --- p.73 / Chapter 2.3.2.2 --- Colony formation assay --- p.74 / Chapter 2.3.2.3 --- Cell cycle analysis --- p.75 / Chapter 2.3.2.4 --- Apoptosis assay --- p.75 / Chapter 2.3.2.5 --- Cell motility and invasion assay --- p.76 / Chapter 2.4 --- Luciferase reporter assay --- p.78 / Chapter 2.4.1 --- Materials --- p.78 / Chapter 2.4.1.1 --- Cloning --- p.78 / Chapter 2.4.1.2 --- Cycle sequencing --- p.78 / Chapter 2.4.1.3 --- Luciferase reporter assay --- p.79 / Chapter 2.4.2 --- Methods --- p.79 / Chapter 2.4.1.1 --- Cloning --- p.79 / Chapter 2.4.2.2 --- Cycle sequencing --- p.81 / Chapter 2.4.2.3 --- Luciferase reporter assay --- p.82 / Chapter 2.5 --- Western blot --- p.84 / Chapter 2.5.1 --- Materials --- p.84 / Chapter 2.5.2 --- Methods --- p.85 / Chapter 2.5.2.1 --- Cell harvesting and protein quantitation --- p.86 / Chapter 2.5.2.2 --- Western blotting --- p.86 / Chapter 2.6 --- Small RNA Sequencing --- p.88 / Chapter 2.6.1 --- Materials --- p.88 / Chapter 2.6.2 --- Methods --- p.88 / Chapter 2.6.2.1 --- Sample preparation --- p.88 / Chapter 2.6.2.2 --- Cluster generation by bridge amplification --- p.88 / Chapter 2.6.2.3 --- Sequencing by synthesis --- p.89 / Chapter 2.7 --- Northern blot analysis --- p.94 / Chapter 2.7.1 --- Materials --- p.94 / Chapter 2.7.2 --- Methods --- p.94 / Chapter 2.7.2.1 --- Polyacrylamide gel electrophoresis (PAGE) --- p.94 / Chapter 2.7.2.2 --- Probe preparation --- p.95 / Chapter 2.7.2.3 --- Hybridization, stringency washes and signal detection --- p.95 / Chapter 3 --- Conventional miRNA profiling reveals miR-145 as a tumor suppressor in HCC --- p.97 / Chapter 3.1 --- Introduction --- p.98 / Chapter 3.2 --- Materials and Methods --- p.102 / Chapter 3.2.1 --- Patients --- p.102 / Chapter 3.2.2 --- qRT-PCR --- p.104 / Chapter 3.2.3 --- Cell line --- p.105 / Chapter 3.2.4 --- Transfection --- p.106 / Chapter 3.2.5 --- In vitro functional assay --- p.107 / Chapter 3.2.5.1 --- Cell viability assay --- p.107 / Chapter 3.2.5.2 --- Colony formation assay --- p.107 / Chapter 3.2.5.3 --- Flow cytometry assay --- p.107 / Chapter 3.2.6 --- miRNA target prediction --- p.109 / Chapter 3.2.7 --- Luciferase reporter assay --- p.110 / Chapter 3.2.8 --- Western blot --- p.112 / Chapter 3.2.9 --- Immunohistochemistry --- p.113 / Chapter 3.2.10 --- Statistical analysis --- p.114 / Chapter 3.3 --- Results --- p.115 / Chapter 3.3.1 --- Down-regulation of miR-145 in primary HCC --- p.115 / Chapter 3.3.2 --- Re-expression of miR-145 induced G₂-M arrest and apoptosis --- p.119 / Chapter 3.3.3 --- IRS1, IRS2 and IGF1R expressions --- p.124 / Chapter 3.3.4 --- miR-145 targeted both IRS1 and IRS2 and elicited IGF signaling --- p.126 / Chapter 3.4 --- Discussion --- p.131 / Chapter 4 --- Small RNA Deep sequencing reveals novel non-coding RNAs in HCC --- p.134 / Chapter 4.1 --- Introduction --- p.135 / Chapter 4.2 --- Materials and Methods --- p.136 / Chapter 4.2.1 --- Cell lines --- p.136 / Chapter 4.2.2 --- Patients --- p.137 / Chapter 4.2.3 --- Small RNA Sequencing --- p.139 / Chapter 4.2.4 --- Bioinformatics analysis --- p.140 / Chapter 4.2.4.1 --- Sequence mapping and ncRNA identification --- p.140 / Chapter 4.2.4.2 --- Putative miRNA prediction --- p.140 / Chapter 4.2.4.3 --- Putative piRNA identification --- p.140 / Chapter 4.2.4.4 --- Differentially-expressed ncRNAs identification --- p.141 / Chapter 4.2.5 --- qRT-PCR --- p.142 / Chapter 4.2.6 --- Northern blot analysis --- p.143 / Chapter 4.2.7 --- Transfection --- p.144 / Chapter 4.2.8 --- In vitro functional assays --- p.145 / Chapter 4.2.8.1 --- Cell viability assay --- p.145 / Chapter 4.2.8.2 --- Cell motility and invasion assay --- p.145 / Chapter 4.2.9 --- Western blot analysis --- p.147 / Chapter 4.2.10 --- Statistical analysis --- p.148 / Chapter 4.3 --- Results --- p.149 / Chapter 4.3.1 --- Small RNA Sequencing --- p.149 / Chapter 4.3.2 --- Up-regulation of putative piR-Hep1 in HCC --- p.155 / Chapter 4.3.3 --- piR-Hep1 silencing reduced cell viability and invasiveness --- p.159 / Chapter 4.3.4 --- Novel miR-1323 overexpression in HCC --- p.162 / Chapter 4.4 --- Discussion --- p.171 / Chapter 5 --- Concluding remarks and future perspectives --- p.175 / Chapter 6 --- References --- p.179
2

The roles of nuclear matrix proteins and nucleophosmin (NPM/B23) in regenerative, cirrhotic and cancerous rat livers. / CUHK electronic theses & dissertations collection

January 2002 (has links)
Yun Jing-ping. / "March 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 185-226). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
3

Epigenetic deregulation of microRNAs in hepatocellular carcinoma.

January 2012 (has links)
雖然錯誤調控微小核糖核酸 (miRNA) 引起肝細胞癌 (HCC) 發生發展的生物途徑得到了廣泛的研究,但是對於上游的調控機制卻知之甚少。以往的研究表明,組蛋白甲基化轉移酶 (EZH2) 介導的組蛋白3上27位賴氨酸三甲基化(H3K27me3)是一類通過沉默腫瘤抑制基因而誘發癌症的機制,並且與脫氧核糖核酸 (DNA) 啟動子甲基化機制獨立存在。另一方面,基因抑制也與 H3K27和DNA甲基化相關聯。盡管如此,miRNA沉默機制,特別是在肝癌中,仍然是知之甚少。 / 在這項研究中,我們使用整合全基因組定位和表達分析方法,以探討在肝癌細胞中miRNA表達的表觀遺傳和轉錄控制。通過染色質免疫沉澱偶聯人類啟動子芯片的方法,我們發現在Hep3B和HKCI - 8肝癌細胞中分別有8.4和12.2%的審問miRNA有豐富的H3K27me3。另一方面,在甲基結合域捕捉偶聯芯片實驗中,我們發現在Hep3B和HKCI-8肝癌細胞中分別有15.5和14.7% 的miRNA出現DNA超甲基化。與以往的蛋白質編碼基因結果相同,大多數 H3K27me3豐富的miRNA沒有被檢測到DNA超甲基化,並且反之亦然。 敲除EZH2基因引起H3K27me3水平廣泛下降,並且恢復 H3K27me3抑制的 miRNA表達,而DNA去甲基化劑5-氮雜 -2'-脫氧胞苷 (5-aza-dC) 卻不能重新啟動他們的表達,進一步顯示EZH2基因介導的H3K27me3引發miRNA沉默的機制是獨立存在的。然而,一些過往研究證明有腫瘤抑制功能的miRNA,包括 miR-9-1,miR-9-2和 miR-9-3 被發現同時被 H3K27me3和DNA甲基化調節。我們進一步發現,在肝瘤細胞中,miR-9 特異性調控致癌性的基因結合核因 (NF-κB) 信號通路,並且與配對的非腫瘤肝組織相比,miR-9 的表達在大約一半的原發性肝癌腫瘤(五十九分之三十零)中顯著被壓抑。 / 為了調查在H3K27me3介導的miRNA基因沉默中參與的轉錄因子,我們應用轉錄因子結合位點分析的方法檢查H3K27me3結合蛋白編碼和miRNA基因的調控區域。在包括miR-9亞型的miRNA中,滎陽 1(YY1)的結合位點在這些調控區域中反覆出現並有很高的代表性。定量芯片聯合聚合酶鏈反應結果顯示,在Hep3B細胞中,敲除YY1不僅大大降低了自身的結合力,同時在 miR-9-1,miR-9-2和 miR-9-3 的啟動子中,EZH2基因和H3K27me3結合也大大降低了。尤其重要的是,敲除YY1可以顯著地重新激活他們的表達,表明在肝癌細胞中YY1在EZH2基因介導的的miR-9 表觀遺傳沉默中發揮重要作用。功能研究證明,下調YY1能夠抑制肝癌細胞的增殖,增加細胞凋亡和減少體內的腫瘤生長。定量實時聚合酶鏈反應進一步證實在miR-9 被下調的子集肝癌腫瘤中,有超過85的樣本顯示YY1和EZH2基因同時過量表達,表明我們的研究結果具有臨床相關性。 / 總之,我們完整的分析表明miRNA的調控在肝癌上的獨特表觀遺傳模式。 H3K27me3介導的miRNA沉默可由擁有致癌功能的YY1誘發,它亦可能代表一個可能公認的肝癌癌基因。綜合表觀遺傳和miRNA表達的轉錄控制的結果,能夠提高我們對肝癌發生發展的認識和闡明利用表觀遺傳方法針對性治療肝癌的新的發展方向。 / Although the biological pathways by which mis-regulated microRNAs (miRNAs) contribute to the development of hepatocellular carcinoma (HCC) have been extensively investigated, little is known about the upstream regulatory mechanisms. Previous studies demonstrated that EZH2-mediated histone H3 lysine 27 trimethylation (H3K27me3) is a mechanism of tumor-suppressor gene silencing in cancer that is potentially independent of promoter DNA methylation. On the other hand, gene repression can be associated with both H3K27 and DNA methylation. However, the mechanisms underlying miRNA silencing, particularly in HCC, are poorly understood. / In this study, we used an integrated genome-wide location and expression analysis to investigate the epigenetic and transcriptional controls of miRNA expression in HCC cells. Chromatin immunoprecipitation (ChIP) coupled with human promoter microarrays revealed that 8.4 and 12.2% of the interrogated miRNA were enriched with H3K27me3 in Hep3B and HKCI-8 HCC cells, respectively. On the other hand, Methyl-binding domain capture coupled with microarray (MethylCap-chip) uncovered that 15.5 and 14.7% of miRNA were hypermethylated in Hep3B and HKCI-8 HCC cells, respectively. Consistent with previous observation on protein-coding genes, most of the miRNAs enriched with H3K27me3 had no detectable DNA hypermethylation and vice versa. Knockdown of EZH2 decreased global H3K27me3 level and restored expression of the H3K27me3-targeted miRNAs while the DNA demethylating agent 5-aza-2’-deoxycytidine (5-aza-dC) did not reactivate their expression, further suggesting the independence of EZH2-mediated H3K27me3 in miRNA silencing. Nevertheless, a few miRNAs reported to exhibit tumor-suppressive functions including miR-9-1, miR-9-2 and miR-9-3 were found to be regulated by both H3K27me3 and DNA methylation. We further found that miR-9 targeted the oncogenic NF-κB signaling pathway in HCC cells and were significantly repressed in approximately half of the primary HCC tumors (30/59) compared to the paired non-tumor liver tissues. / To investigate the involvement of transcription factors in H3K27me3-mediated gene silencing of miRNAs, the regulatory regions of H3K27me3-bound protein-coding and miRNA genes were submitted to transcription factor binding site analysis. The binding sites for Ying Yang 1 (YY1) were recurrently over-represented in these loci including the miR-9 isoforms. Quantitative ChIP-PCR demonstrated that knockdown of YY1 in Hep3B cells not only significantly reduced its own binding, but also the EZH2 and H3K27me3 promoter occupancy at miR-9-1, miR-9-2 and miR-9-3. Importantly, their expression levels were significantly reactivated by YY1 knockdown, suggesting that YY1 plays part in the EZH2-mediated epigenetic silencing of miR-9 in HCC cells. Functionally, down-regulation of YY1 was shown to inhibit HCC cell proliferation, increase cell apoptosis and reduce tumor growth in vivo. Quantitative RT-PCR further demonstrated that YY1 and EZH2 were concordantly over-expressed in over 85% of the same subset of HCC tumors that exhibited miR-9 down-regulation, demonstrating the clinical relevance of our findings. / In conclusion, our integrated analysis demonstrated differential epigenetic patterns of miRNA regulation in HCC. H3K27me3-mediated silencing of miRNAs may be initiated by YY1, which possesses oncogenic functions and may represent a putative HCC oncogene. The findings of combinatorial epigenetic and transcriptional control of miRNA expression enhance our understanding of hepatocarcinogenesis and shed light on the development of novel epigenetic targeted therapy of HCC. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Tsang, Pui Fong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 111-121). / Abstracts also in Chinese. / Abstract (English version) --- p.i / Abstract (Chinese version) --- p.iv / Acknowledgements --- p.vi / table of contents --- p.vii / List of tables --- p.x / List of Figures --- p.xi / Abbreviations --- p.xiii / Chapter CHAPTER 1 --- INTRODUCTION4 / Chapter 1.1 --- Hepatocellular carcinoma --- p.1 / Chapter 1.1.1 --- Epidemiology --- p.1 / Chapter 1.1.2 --- Etiology --- p.2 / Chapter 1.2 --- Epigenetic mechanisms --- p.3 / Chapter 1.2.1 --- Epigenetic silencing by DNA hypermethylation --- p.3 / Chapter 1.2.2 --- Epigenetic silencing by Polycomb group protein --- p.5 / Chapter 1.2.3 --- Interplay between H3K27me3 and DNA hypermethylation --- p.7 / Chapter 1.3 --- microRNA --- p.10 / Chapter 1.3.1 --- Transcriptional gene silencing by miRNA --- p.11 / Chapter 1.3.2 --- miRNA and cancers --- p.12 / Chapter 1.3.3 --- miRNA and liver cancer --- p.13 / Chapter 1.4 --- Signal transduction pathway and cancers --- p.14 / Chapter 1.5 --- Aims of study --- p.15 / Chapter CHAPTER 2 --- MATERIALS AND METHODS / Chapter 2.1 --- Cell lines --- p.16 / Chapter 2.2 --- Clinical samples --- p.16 / Chapter 2.3 --- Plasmid DNA transfection --- p.16 / Chapter 2.4 --- Small interfering RNA transfection --- p.17 / Chapter 2.5 --- Extraction of total RNA --- p.19 / Chapter 2.6 --- Western blot analysis --- p.19 / Chapter 2.7 --- Quantitative RT-PCR --- p.20 / Chapter 2.8 --- miRNA Real Time RT-PCR --- p.22 / Chapter 2.9 --- ChIP-chip assay --- p.24 / Chapter 2.10 --- MethylCap-chip --- p.27 / Chapter 2.11 --- miRNA microarray --- p.28 / Chapter 2.12 --- ChIP Assay and Quantitative ChIP-PCR Assay --- p.28 / Chapter 2.13 --- Colony formation assay --- p.33 / Chapter 2.14 --- Cell proliferation assay --- p.33 / Chapter 2.15 --- Annexin V apoptosis assay --- p.34 / Chapter 2.16 --- Cancer 10-pathway reporter array --- p.34 / Chapter 2.16.1 --- Transfection of siEZH2 with 5-aza-dC treatment --- p.34 / Chapter 2.16.2 --- Transfection of siYY1 and pcDNA3-miR9 plasmid --- p.35 / Chapter 2.16.3 --- Luciferase reporter array --- p.35 / Chapter 2.17 --- Animal Studies --- p.36 / Chapter 2.18 --- Statistical Analysis --- p.36 / Chapter CHAPTER 3 --- Results / Chapter 3.1 --- Occupancy of miRNA genes by epigenetic marks in HCC cells --- p.37 / Chapter 3.1.1 --- Identification of H3K27me3-occupied miRNAs --- p.37 / Chapter 3.1.2 --- Identification of DNA methylation-occupied miRNAs --- p.41 / Chapter 3.1.3 --- Relationship between H3K27me3 and DNA methylation occupancy of miRNAs in HCC cells --- p.45 / Chapter 3.2 --- Regulation of miRNA expression by H3K27me3 and DNA methylation in HCC cells --- p.51 / Chapter 3.3 --- Epigenetic regulation and molecular function of miR-9 in HCC cells --- p.56 / Chapter 3.3.1 --- Confirmation of H3K27me3 and DNA methylation occupancy in miR-9 genes --- p.59 / Chapter 3.3.2 --- Synergistic reactivation of miR-9 upon removal of epigenetic marks --- p.62 / Chapter 3.3.3 --- Effect of miR-9 re-expression on NFKB1 (p50) expression and NF-κB signaling in HCC cells --- p.66 / Chapter 3.4 --- Role of the transcription factor YY1 in the epigenetic regulation of miR-9 --- p.72 / Chapter 3.4.1 --- Identification of transcription factors involved in the regulation of H3K27me3-bound genes --- p.72 / Chapter 3.4.2 --- Occupancy of YY1 on miR-9 in HCC cells --- p.75 / Chapter 3.4.3 --- Effects of YY1 on EZH2/H3K27me3 occupancy and expression of miR-9 --- p.78 / Chapter 3.4.4 --- Effects of YY1 on p50/p65 expression and NF-κB signaling in HCC cells --- p.81 / Chapter 3.5 --- Functional significance of YY1 in HCC --- p.84 / Chapter 3.5.1 --- Effect of YY1 on HCC cell growth --- p.84 / Chapter 3.5.2 --- Effect of YY1 on HCC cell apoptosis --- p.87 / Chapter 3.5.3 --- Effect of YY1 on HCC cell growth in vivo --- p.90 / Chapter 3.5.4 --- Expressions of YY1, EZH2 and miR-9 on clinical HCC samples --- p.92 / Chapter CHAPTER 4 --- DISCUSSION / Chapter 4.1 --- Independence of EHZ2-mediated H3K27me3 and DNA methylation --- p.97 / Chapter 4.2 --- Concordant H3K27 and DNA methylation-mediated silencing of miR-9 --- p.101 / Chapter 4.3 --- Ectopic expression of miR-9 inhibits NF-kB signaling in HCC cells --- p.102 / Chapter 4.4 --- YY1 is involved in the regulation of H3K27me3-bound genes --- p.103 / Chapter 4.5 --- Knockdown of YY1 inhibits NF-kB signaling in HCC --- p.105 / Chapter 4.6 --- Clinical relevance and therapeutic significance of miR-9 silencing by YY1-mediated recruitment of EZH2 --- p.106 / Chapter 4.7 --- Limitations and future studies --- p.109 / REFERENCES --- p.111 / PUBLICATION --- p.122
4

Functional characterization of GEF-H1 in liver tumorigenesis.

January 2012 (has links)
Tsang, Chi Keung. / "November 2011." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 103-116). / Abstracts in English and Chinese. / Abstract --- p.I / 摘要 --- p.III / Acknowledgement --- p.IV / Table of content --- p.V / List of Figures --- p.VIII / List of Tables --- p.XI / Abbreviations --- p.XII / Chapter Chapter 1: --- INTRODUCTION --- p.1 / Chapter 1.1. --- Hepatocellular carcinoma --- p.2 / Chapter 1.1.1. --- Etiological factors --- p.11 / Chapter 1.1.1.1. --- Chronic Hepatitis and Liver Cirrhosis --- p.13 / Chapter 1.1.1.2. --- HBV --- p.13 / Chapter 1.1.1.3. --- HCV --- p.17 / Chapter 1.1.1.4. --- Male gender --- p.20 / Chapter 1.1.1.5. --- Aflatoxin B1 exposure --- p.21 / Chapter 1.2. --- Genomic abnormalities in HCC --- p.23 / Chapter 1.3. --- GEF-H1 --- p.24 / Chapter 1.4. --- RhoA --- p.26 / Chapter 1.5. --- Epithelial-Mesenchymal Transition (EMT) --- p.29 / Chapter 1.6. --- Aims of Thesis --- p.31 / Chapter Chapter 2: --- MATERIALS AND METHODS --- p.32 / Chapter 2.1. --- Materials --- p.33 / Chapter 2.1.1. --- Chemicals and Reagents --- p.33 / Chapter 2.1.2. --- Buffers --- p.35 / Chapter 2.1.3. --- Cell Culture --- p.37 / Chapter 2.1.4. --- Nucleic Acids --- p.38 / Chapter 2.1.5. --- Enzymes --- p.39 / Chapter 2.1.6. --- Equipments --- p.40 / Chapter 2.1.7. --- Kits --- p.41 / Chapter 2.1.8. --- Antibodies --- p.42 / Chapter 2.1.9. --- Software and Web Resources --- p.43 / Chapter 2.2. --- Fluorescence In Situ Hybridization (FISH) --- p.44 / Chapter 2.2.1. --- Probe Preparation --- p.44 / Chapter 2.2.1.1. --- Human Bacterial Artificial Chromosome (BAC) probe preparation --- p.44 / Chapter 2.2.1.2. --- Nick translation --- p.44 / Chapter 2.2.2. --- Hybridization --- p.45 / Chapter 2.3. --- Genomic DNA extraction --- p.47 / Chapter 2.4. --- Copy number analysis --- p.48 / Chapter 2.5. --- Exon Sequencing analysis --- p.49 / Chapter 2.5.1. --- PCR amplification of GEF-H1 exons --- p.49 / Chapter 2.5.2. --- Cycle sequencing --- p.49 / Chapter 2.6. --- Ectopic expression of GEF-H1 in immortalized hepatocyte cell line --- p.52 / Chapter 2.6.1. --- Construction of GEF-H1 expressing vector --- p.52 / Chapter 2.6.2. --- Sub-cloning --- p.52 / Chapter 2.6.3. --- Transfection and clonal selection --- p.53 / Chapter 2.7. --- Gene Expression Analysis by Quantitative RT-PCR --- p.55 / Chapter 2.7.1. --- Total RNA extraction --- p.55 / Chapter 2.7.2. --- qRT-PCR analysis for gene expression --- p.55 / Chapter 2.8. --- Western blot --- p.58 / Chapter 2.9. --- Functional Analysis --- p.60 / Chapter 2.9.1. --- Cell viability (MTT) assay --- p.60 / Chapter 2.9.2. --- Cell proliferation assays (BrdU-incorporation) --- p.60 / Chapter 2.9.3. --- Mitomycin C treatment --- p.61 / Chapter 2.9.4. --- Migration and Invasion assays --- p.63 / Chapter 2.9.5. --- Wound healing assay --- p.65 / Chapter 2.9.6. --- Transient knock-down of RhoA --- p.65 / Chapter 2. --- 10. Immuno-fluorescent imaging --- p.66 / Chapter 2. --- 11. In vivo tumorigenic study of GEF-H1 by subcutaneous injection --- p.68 / Chapter 2. --- 12. Statistical analysis --- p.69 / Chapter Chapter 3: --- RESULTS --- p.70 / Chapter 3.1. --- Verifying copy number gain of GEF-H1 in high GEF-H1 expressing HCC --- p.71 / Chapter 3.2. --- Verifying if there is any GEF-H1 exon point mutation in HCC --- p.75 / Chapter 3.3. --- Functional roles of GEF-H1 in HCC --- p.77 / Chapter 3.4. --- GEF-Hl-induced functions were RhoA independent --- p.83 / Chapter 3.5. --- GEF-H1 Induction of Epithelial-mesenchymal transition in HCC --- p.88 / Chapter 3.6. --- GEF-H1 induced tumorigenicity of MIHA cells --- p.95 / Chapter Chapter 4: --- DISCUSSIONS --- p.96 / Chapter 4.1. --- GEF-H1 in HCC and other cancers --- p.97 / Chapter 4.2. --- GEF-H1 promotes cell motility --- p.98 / Chapter 4.3. --- GEF-H1 induced tumorigenicity --- p.100 / Chapter Chapter 5: --- CONCLUSIONS AND PROPOSED FUTURE INVESTIGATIONS --- p.101 / Chapter Chapter 6: --- REFERENCES --- p.103
5

Identification of peroxisome proliferator-activated receptor alpha (PPARα)-dependent genes involved in peroxisome proliferator-induced hepatocarcinogenesis.

January 2006 (has links)
Leung Wan-chi. / Thesis submitted in: November 2005. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 276-284). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese Version) --- p.v / Acknowledgements --- p.viii / Tables of Contents --- p.ix / List of Abbreviations --- p.xxx / List of Figures --- p.xxxiii / List of Tables --- p.xlii / Chapter Chapter 1 --- Literature review --- p.1 / Chapter 1.1 --- Peroxisome proliferator activator receptors --- p.1 / Chapter 1.2 --- Peroxisome proliferators --- p.6 / Chapter 1.2.1 --- Hepatomegaly --- p.9 / Chapter 1.2.2 --- Peroxisome proliferation --- p.11 / Chapter 1.2.3 --- Target genes regulation --- p.12 / Chapter 1.2.4 --- Hypolipidemic effect --- p.16 / Chapter 1.2.5 --- Hepatocarcinogenesis --- p.18 / Chapter 1.3 --- Mode of actions --- p.20 / Chapter 1.3.1 --- Oxidative stress --- p.21 / Chapter 1.3.2 --- Inhibition of apoptosis --- p.22 / Chapter 1.3.2 --- Increase in cell replication --- p.22 / Chapter 1.3.4 --- Alterations in cell cycle control --- p.23 / Chapter 1.4 --- Objectives --- p.23 / Chapter Chapter 2 --- Materials and Methods --- p.25 / Chapter 2.1 --- Animal tail-genotyping --- p.25 / Chapter 2.1.1 --- Materials --- p.25 / Chapter 2.1.2 --- Methods --- p.28 / Chapter 2.2 --- Animal treatment --- p.29 / Chapter 2.2.1 --- Materials --- p.29 / Chapter 2.2.2 --- Methods --- p.29 / Chapter 2.3 --- Serum cholesterol and tryiglyceride analysis --- p.30 / Chapter 2.3.1 --- Materials --- p.31 / Chapter 2.3.2 --- Methods --- p.31 / Chapter 2.3.2.1 --- Serum preparation --- p.31 / Chapter 2.3.2.2 --- Serum cholesterol analysis --- p.31 / Chapter 2.3.2.3 --- Serum triglyceride analysis --- p.32 / Chapter 2.4 --- Histological analysis --- p.32 / Chapter 2.4.1 --- Materials --- p.32 / Chapter 2.4.2 --- Methods --- p.33 / Chapter 2.5 --- Total RNA isolation --- p.34 / Chapter 2.5.1 --- Materials --- p.34 / Chapter 2.5.2 --- Methods --- p.34 / Chapter 2.6 --- DNase I treatment of total liver RNA --- p.37 / Chapter 2.6.1 --- Materials --- p.37 / Chapter 2.6.2 --- Methods --- p.37 / Chapter 2.7 --- Reverse transcription (RT) of mRNA and non- fluorescent PCR (non-fluoroDD PCR) --- p.38 / Chapter 2.7.1 --- Materials --- p.43 / Chapter 2.7.2 --- Methods --- p.43 / Chapter 2.8 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.44 / Chapter 2.8.1 --- Materials --- p.44 / Chapter 2.8.2 --- Method --- p.44 / Chapter 2.9 --- Fluorescent differential display (fluoroDD) --- p.45 / Chapter 2.9.1 --- Materials --- p.45 / Chapter 2.9.2 --- Methods --- p.45 / Chapter 2.9.2.1 --- FluoroDD gel preparation --- p.45 / Chapter 2.9.2.2 --- Sample preparation and electrophoresis --- p.45 / Chapter 2.10 --- Excision of differentially expressed cDNA fragments --- p.46 / Chapter 2.10.1 --- Materials --- p.46 / Chapter 2.10.2 --- Methods --- p.46 / Chapter 2.11 --- Reamplification of differentally expressed cDNA fragments --- p.48 / Chapter 2.11.1 --- Materials --- p.48 / Chapter 2.11.2 --- Methods --- p.50 / Chapter 2.12 --- Subcloning of reamplified cDNA fragmens --- p.50 / Chapter 2.12.1 --- Materials --- p.53 / Chapter 2.12.2 --- Methods --- p.53 / Chapter 2.12.2.1 --- Ligation --- p.53 / Chapter 2.12.2.2 --- Transformation --- p.53 / Chapter 2.12.2.3 --- Phenol-choloroform extraction --- p.54 / Chapter 2.12.2.4 --- Confirmation of insert size by EcoRI digestion --- p.54 / Chapter 2.12.2.5 --- Mini-preparation of plasmid DNA from recombinant clones --- p.55 / Chapter 2.13 --- Sequencing of subcloned cDNA fragments --- p.55 / Chapter 2.13.1 --- Materials --- p.56 / Chapter 2.13.2 --- Methods --- p.56 / Chapter 2.13.2.1 --- Sequencing of fluoroDD cDNA fragments --- p.56 / Chapter 2.13.2.2 --- Blast search against computer database --- p.57 / Chapter 2.14 --- Northern blot analysis of sequenced cDNA fragments --- p.57 / Chapter 2.14.1 --- Materials --- p.58 / Chapter 2.14.2 --- Methods --- p.58 / Chapter 2.14.2.1 --- Formaldehyde agarose gel electrophoresis of total RNA --- p.58 / Chapter 2.14.2.2 --- Preparation of DIG-labeled RNA probes for hybridization --- p.59 / Chapter 2.14.2.3 --- Preparation of PCR DIG-labeled cDNA probes for hybridization --- p.60 / Chapter 2.14.2.4 --- Hybridization and colour development --- p.60 / Chapter Chapter 3 --- Results --- p.62 / Chapter 3.1 --- Confirmation of genotypes by PCR --- p.62 / Chapter 3.2 --- Body weight changes --- p.62 / Chapter 3.3 --- Organ weight changes --- p.67 / Chapter 3.4 --- Serum cholesterol and triglyceride levels --- p.70 / Chapter 3.5 --- Liver histology --- p.78 / Chapter 3.6 --- Reverse transcription (RT) of mRNA and non-fluorescent PCR (non-flurroDD PCR) --- p.114 / Chapter 3.7 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.125 / Chapter 3.8 --- Reamplification of fluorescent differential display (FDD) fragments --- p.138 / Chapter 3.9 --- Subcloning of reamplifled FDD fragments --- p.162 / Chapter 3.10 --- Sequencing of subcloned cDNA fragments --- p.176 / Chapter 3.11 --- Northern blot analysis of sequenced cDNA fragments --- p.195 / Chapter Chapter 4 --- Discussion --- p.250 / Chapter 4.1 --- Body weight changes --- p.250 / Chapter 4.2 --- Organ weight changes --- p.251 / Chapter 4.3 --- Serum cholesterol and triglyceride levels --- p.253 / Chapter 4.4 --- Liver histology --- p.254 / Chapter 4.5 --- "Functions and roles of identified PPARa-dependent and Wy-14,643- responsive genes" --- p.255 / Chapter 4.6 --- Mechanism of PP-induced hepatocarcinogeneis --- p.270 / Chapter Chapter 5 --- Conclusions --- p.274 / References --- p.276 / Appendix A Tables of preparation of reaction mix --- p.285 / Table A1. Preparation of animal tail genotyping PCR reaction --- p.285 / Table A2. Preparation of DNase I treatment --- p.285 / Table A3. Preparation of reverse transcription of non-fluoroDD and fluoroDD --- p.285 / Table A4. Preparation of non-fluoroDD and fluoroDD RT-PCR --- p.286 / Table A5. Preparation of reamplification of differentially expressed cDNA fragments --- p.286 / Table A6. Preparation of PCR reaction for DNA sequencing --- p.286 / Table A7. Preparation of PCR reaction for RNA probe --- p.287 / Table A8. Preparation of PCR reaction for cDNA probe --- p.287 / Appendix B DNA sequences and sequencing alignments of FluoroDD Fragments --- p.288 / Chapter B 1.1: --- DNA sequence of cDNA subclone AA1#2 (AP1 & ARP2) using M13 forward (-20) primer --- p.288 / Chapter B 1.2: --- "Sequencing alignment of cDNA subclone AA1#2 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.288 / Chapter B 1.3: --- Summary of sequence alignment of cDNA subclone AA1#2 with mouse Peci --- p.288 / Chapter B 2.1: --- DNA sequence of cDNA subclone AA1#3 (AP1 & ARP2) using M13 forward (-20) primer --- p.289 / Chapter B 2.2: --- "Sequencing alignment of cDNA subclone AA1#3 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.289 / Chapter B 2.3: --- Summary of sequence alignment of cDNA subclone AA1#3 with mouse Peci --- p.289 / Chapter B 3.1: --- DNA sequence of cDNA subclone AA1#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.290 / Chapter B 3.2: --- "Sequencing alignment of cDNA subclone AA1#4 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.290 / Chapter B 3.3: --- Summary of sequence alignment of cDNA subclone AA1#4 with mouse Peci --- p.290 / Chapter B 4.1: --- DNA sequence of cDNA subclone AA1#20 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.291 / Chapter B 4.2: --- "Sequencing alignment of cDNA subclone AA1#20 with mouse peroxisomal delta 3, delta 2- enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.291 / Chapter B 4.3: --- Summary of sequence alignment of cDNA subclone AA1#20 with mouse Peci --- p.291 / Chapter B 5.1: --- DNA sequence of cDNA subclone AA4#1 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.292 / Chapter B 5.2: --- Sequencing alignment of cDNA subclone AA4#1 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.292 / Chapter B 5.3: --- Summary of sequence alignment of cDNA subclone AA4#1 with mouse Apoa5 --- p.292 / Chapter B 6.1: --- DNA sequence of cDNA subclone AA4#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.293 / Chapter B 6.2: --- Sequencing alignment of cDNA subclone AA4#9 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.293 / Chapter B 6.3: --- Summary of sequence alignment of cDNA subclone AA4#9 with mouse Apoa5 --- p.293 / Chapter B 7.1: --- DNA sequence of cDNA subclone AA5#5 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.294 / Chapter B 7.2: --- Sequencing alignment of cDNA subclone AA5#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.294 / Chapter B 7.3: --- Summary of sequence alignment of cDNA subclone AA5#5 with mouse mitochondrion --- p.294 / Chapter B 8.1: --- DNA sequence of cDNA subclone AA6#1 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.295 / Chapter B 8.2: --- Sequencing alignment of cDNA subclone AA6#1 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.295 / Chapter B 8.3: --- Summary of sequence alignment of cDNA subclone AA6#1 with mouse mitochondion --- p.295 / Chapter B 9.1: --- DNA sequence of cDNA subclone AA6#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.296 / Chapter B 9.2: --- Sequencing alignment of cDNA subclone AA6#9 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.296 / Chapter B 9.3: --- Summary of sequence alignment of cDNA subclone AA6#9 with mouse mitochondrion --- p.296 / Chapter B 10.1: --- DNA sequence of cDNA subclone AA7#3 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.297 / Chapter B 10.2: --- Sequencing alignment of cDNA subclone AA7#3 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.297 / Chapter B 10.3: --- Summary of sequence alignment of cDNA subclone AA7#3 with mouse mitochondrion --- p.297 / Chapter B 11.1: --- DNA sequence of cDNA subclone AA7#5 (AP 1 & ARP2) using Ml3 reverse primer --- p.298 / Chapter B 11.2: --- Sequencing alignment of cDNA subclone AA7#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.298 / Chapter B 11.3: --- Summary of sequence alignment of cDNA subclone AA7#5 with mouse mitochondrion --- p.298 / Chapter B 12.1: --- DNA sequence of cDNA subclone AA10#1 (AP1 & ARP2) using M l3 forward (-20) primer --- p.299 / Chapter B 12.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.299 / Chapter B 12.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.299 / Chapter B 13.1: --- DNA sequence of cDNA subclone AA10#1 (AP 1 & ARP2) using M13 reverse primer --- p.300 / Chapter B 13.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.300 / Chapter B 13.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.300 / Chapter B 14.1: --- DNA sequence of cDNA subclone AA12#4 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.301 / Chapter B 14.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.301 / Chapter B 14.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.301 / Chapter B 15.1: --- DNA sequence of cDNA subclone AA12#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.302 / Chapter B 15.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.302 / Chapter B 15.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.302 / Chapter B 16.1: --- DNA sequence of cDNA subclone AB7#2 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.303 / Chapter B 16.2: --- "Sequencing alignment of cDNA subclone AB7#2 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.303 / Chapter B 16.3: --- Summary of sequence alignment of cDNA subclone AB7#2 with mouse UGT2b5 --- p.303 / Chapter B 17.1: --- DNA sequence of cDNA subclone AB7#8 (AP3 & ARP3) using M13 reverse primer --- p.304 / Chapter B 17.2: --- "Sequencing alignment of cDNA subclone AB7#8 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.304 / Chapter B 17.3: --- Summary of sequence alignment of cDNA subclone AB7#8 with mouse UGT2b5 --- p.304 / Chapter B 18.1: --- DNA sequence of cDNA subclone AB17#16 (AP3 & ARP3) using M13 reverse primer --- p.305 / Chapter B 18.2: --- Sequencing alignment of cDNA subclone AB17#16 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.305 / Chapter B 18.3: --- Summary of sequence alignment of cDNA subclone AB17#16 with mouse mitochondrion --- p.305 / Chapter B 19.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 forward (-20) primer --- p.306 / Chapter B 19.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.306 / Chapter B 20.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 reverse primer --- p.307 / Chapter B 20.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.307 / Chapter B 20.3: --- Summary of sequence alignment of cDNA subclone AB 18#4 with mouse mitochondrion --- p.307 / Chapter B 21.1: --- DNA sequence of cDNA subclone AB19#2 (AP3 & ARP3) using M13 forward (-20) primer --- p.308 / Chapter B 21.2: --- Sequencing alignment of cDNA subclone AB 19#2 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.308 / Chapter B 21.3: --- Summary of sequence alignment of cDNA subclone AB19#2 with mouse mitochondrion --- p.308 / Chapter B 22.1: --- DNA sequence of cDNA subclone AB19#10 (AP3 & ARP3) using Ml3 reverse primer --- p.309 / Chapter B 22.2: --- Sequencing alignment of cDNA subclone AB 19#10 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.309 / Chapter B 22.3: --- Summary of sequence alignment of cDNA subclone AB19#10 with mouse mitochondrion --- p.309 / Chapter B 23.1: --- DNA sequence ofcDNA subclone AB22#9 (AP3 & ARP3) using M13 forward (-20) primer --- p.310 / Chapter B 23.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.310 / Chapter B 23.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.310 / Chapter B 24.1: --- DNA sequence of cDNA subclone AB22#9 (AP3 & ARP3) using Ml3 reverse primer --- p.311 / Chapter B 24.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.311 / Chapter B 24.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.311 / Chapter B 25.1: --- DNA sequence ofcDNA subclone AB24#9 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.312 / Chapter B 25.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.312 / Chapter B 25.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.312 / Chapter B 26.1: --- DNA sequence of cDNA subclone AB24#9 (AP3 & ARP3) using M13 reverse primer --- p.313 / Chapter B 26.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.313 / Chapter B 26.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.313 / Chapter B 27.1: --- DNA sequence of cDNA subclone AB25#6 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.314 / Chapter B 27.2: --- Sequencing alignment of cDNA subclone AB25#6 with mouse Cyp4a l4 by BLAST searching against the National Center for Biotechnology Information database --- p.314 / Chapter B 27.3: --- Summary of sequence alignment of cDNA subclone AB25#6 with mouse Cyp4al4 --- p.314 / Chapter B 28.1: --- DNA sequence of cDNA subclone AB26#17 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.315 / Chapter B 28.2: --- Sequencing alignment of cDNA subclone AB26#17 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.315 / Chapter B 28.3: --- Summary of sequence alignment of cDNA subclone AB26#17 with mouse Cyp4al4 --- p.315 / Chapter B 29.1: --- DNA sequence of cDNA subclone AB26#3Q (AP3 & ARP3) using M13 reverse primer --- p.316 / Chapter B 29.2: --- Sequencing alignment of cDNA subclone AB26#30 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.316 / Chapter B 29.3: --- Summary of sequence alignment of cDNA subclone AB26#30 with mouse Cyp4al4 --- p.316 / Chapter B 30.1: --- DNA sequence of cDNA subclone AB29#7 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.317 / Chapter B 30.2: --- Sequencing alignment of cDNA subclone AB29#7 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.317 / Chapter B 30.3: --- Summary of sequence alignment of cDNA subclone AB29#7 with mouse catalase --- p.317 / Chapter B 31.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.318 / Chapter B 31.2: --- Sequencing alignment of cDNA subclone AC1#1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.318 / Chapter B 31.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.318 / Chapter B 32.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP 19) using Ml3 reverse primer --- p.319 / Chapter B 32.2: --- Sequencing alignment of cDNA subclone AC 1# 1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.319 / Chapter B 32.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.319 / Chapter B 33.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 forward (-20) primer --- p.320 / Chapter B 33.2: --- Sequencing alignment of cDNA subclone AC 1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.320 / Chapter B 33.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.320 / Chapter B 34.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 reverse primer --- p.321 / Chapter B 34.2: --- Sequencing alignment of cDNA subclone AC1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.321 / Chapter B 34.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.321 / Chapter B 35.1: --- DNA sequence ofcDNA subclone AC2#2 (AP2 & ARP19) using Ml3 reverse primer --- p.322 / Chapter B 35.2: --- Sequencing alignment of cDNA subclone AC2#2 with mouse bifunctional enzyme (PBFE) by BLAST searching against the National Center for Biotechnology Information database --- p.322 / Chapter B 35.3: --- Summary of sequence alignment of cDNA subclone AC2#2 with mouse PBFE --- p.322 / Chapter B 36.1: --- DNA sequence of cDNA subclone AC2#5 (AP2 & ARP19) using Ml3 reverse primer --- p.323 / Chapter B 36.2: --- Sequencing alignment of cDNA subclone AC2#5 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.323 / Chapter B 36.3: --- Summary of sequence alignment of cDNA subclone AC2#5 with mouse catalase --- p.323 / Chapter B 37.1: --- DNA sequence of cDNA subclone AC2#6 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.324 / Chapter B 37.2: --- Sequencing alignment of cDNA subclone AC2#6 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.324 / Chapter B 37.3: --- Summary of sequence alignment of cDNA subclone AC2#6 with mouse SPI --- p.324 / Chapter B 38.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.325 / Chapter B 38.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse Cyp2a5 by BLAST searching against the National Center for Biotechnology Information database --- p.325 / Chapter B 38.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse Cyp2a5 --- p.325 / Chapter B 39.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP 19) using M13 reverse primer --- p.326 / Chapter B 39.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.326 / Chapter B 39.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse SPI --- p.326 / Chapter B 40.1: --- DNA sequence of cDNA subclone AC7#5 (AP2& ARP 19) using M13 forward (-20) primer --- p.327 / Chapter B 40.2: --- Sequencing alignment of cDNA subclone AC7#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.327 / Chapter B 40.3: --- Summary of sequence alignment of cDNA subclone AC7#5 with mouse SPI --- p.327 / Chapter B 41.1: --- DNA sequence of cDNA subclone AD6#4 (AP2 & ARP 18) using Ml3 reverse primer --- p.328 / Chapter B 41.2: --- Sequencing alignment of cDNA subclone AD6#4 with mouse N-terminal Asn amidase (Ntanl) by BLAST searching against the National Center for Biotechnology Information database --- p.328 / Chapter B 41.3: --- Summary of sequence alignment of cDNA subclone AD6#4 with mouse Ntanl --- p.328 / Chapter B 42.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.329 / Chapter B 42.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.329 / Chapter B 42.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cvp4al0 --- p.329 / Chapter B 43.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP18) using M13 reverse primer --- p.330 / Chapter B 43.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.330 / Chapter B 43.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cyp4al0 --- p.330 / Chapter B 44.1: --- DNA sequence of cDNA subclone AD8#2 (AP2 & ARP 18) using M13 forward (-20) primer --- p.331 / Chapter B 44.2: --- Sequencing alignment of cDNA subclone AD8#2with mouse Cyp4a l0 by BLAST searching against the National Center for Biotechnology Information database --- p.331 / Chapter B 44.3: --- Summary of sequence alignment of cDNA subclone AD8#2 with mouse Cvp4a10 --- p.331 / Chapter B 45.1: --- DNA sequence ofcDNA subclone AD8#7 (AP2 & ARP18) using Ml3 reverse primer --- p.332 / Chapter B 45.2: --- Sequencing alignment of cDNA subclone AD8#7 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.332 / Chapter B 45.3: --- Summary of sequence alignment of cDNA subclone AD8#7 with mouse Cyp4a10 --- p.332 / Chapter B 46.1: --- DNA sequence of cDNA subclone AD9#2 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.333 / Chapter B 46.2: --- Sequencing alignment of cDNA subclone AD9#2 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.333 / Chapter B 46.3: --- Summary of sequence alignment of cDNA subclone AD9#2 with mouse Cyp4al0 --- p.333 / Chapter B 47.1: --- DNA sequence of cDNA subclone AD9#3 (AP2 & ARP 18) using M13 reverse primer --- p.334 / Chapter B 47.2: --- Sequencing alignment of cDNA subclone AD9#3 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.334 / Chapter B 47.3: --- Summary of sequence alignment of cDNA subclone AD9#3 with mouse Cvp4a10 --- p.334 / Chapter B 48.1: --- DNA sequence ofcDNA subclone AF1#8 (AP10 & ARP13) using M13 forward (-20) primer --- p.335 / Chapter B 48.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.335 / Chapter B 48.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.335 / Chapter B 49.1: --- DNA sequence of cDNA subclone AF1#8 (AP 10 & ARP 13) using Ml3 reverse primer --- p.336 / Chapter B 49.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.336 / Chapter B 49.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.336 / Chapter B 50.1: --- DNA sequence of cDNA subclone AF21#5 (AP 10 & ARP 13) using M13 reverse primer --- p.337 / Chapter B 50.2: --- "Sequencing alignment ofcDNA subclone AF21#5 with mouse cell death-inducing DNA fragmentation factor, alpha subunit-like effector B (Cideb) by BLAST searching against the National Center for Biotechnology Information database" --- p.337 / Chapter B 50.3: --- Summary of sequence alignment of cDNA subclone AF21#5 with mouse Cideb --- p.337 / Chapter B 51.1: --- DNA sequence ofcDNA subclone AF25#6 (AP10 & ARP13) using M13 forward (-20) primer --- p.338 / Chapter B 51.2: --- Sequencing alignment of cDNA subclone AF25#6 with mouse major urinary protein 2 (MUPII) by BLAST searching against the National Center for Biotechnology Information database --- p.338 / Chapter B 51.3: --- Summary of sequence alignment of cDNA subclone AF25#6 with mouse MUP II --- p.338 / Chapter B 52.1: --- DNA sequence of cDNA subclone AF25#7 (AP 10 & ARP 13) using Ml3 reverse primer --- p.339 / Chapter B 52.2: --- Sequencing alignment of cDNA subclone AF25#7 with mouse major urinary protein 2 (MUP II) by BLAST searching against the National Center for Biotechnology Information database --- p.339 / Chapter B 52.3: --- Summary of sequence alignment of cDNA subclone AF25#7 with mouse MUPII --- p.339 / Chapter B 53.1: --- DNA sequence ofcDNA subclone AF30#4 (AP10 & ARP13) using M13 forward (-20) primer --- p.340 / Chapter B 53.2: --- Sequencing alignment of cDNA subclone AF30#4 with mouse mRNA for suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.340 / Chapter B 53.3: --- Summary of sequence alignment of cDNA subclone AF3Q#4 with mouse SAC1 --- p.340 / Chapter B 54.1: --- DNA sequence of cDNA subclone AF30#5 (AP 10 & ARP 13) using Ml3 reverse primer --- p.341 / Chapter B 54.2: --- Sequencing alignment of cDNA subclone AF30#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.341 / Chapter B 54.3: --- Summary of sequence alignment of cDNA subclone AF30#5 with mouse mitochondrion --- p.341 / Chapter B 55.1: --- DNA sequence ofcDNA subclone AH1#6 (AP11 & ARP19) using M13 forward (-20) primer --- p.342 / Chapter B 55.2: --- Sequencing alignment of cDNA subclone AH1#6 with mouse EST by BLAST searching against the National Center for Biotechnology Information database --- p.342 / Chapter B 55.3: --- Summary of sequence alignment of cDNA subclone AH1#6 with mouse EST --- p.342 / Chapter B 56.1: --- DNA sequence of cDNA subclone AIl#5 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.343 / Chapter B 56.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.343 / Chapter B 56.3: --- Summary of sequence alignment of cDNA subclone All#5 with mouse SPI --- p.343 / Chapter B 57.1: --- DNA sequence of cDNA subclone AI1#5 (AP6 & ARP4) using Ml3 reverse primer --- p.344 / Chapter B 57.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST --- p.344 / Chapter B 57.3: --- Summary of sequence alignment of cDNA subclone AIl #5 with mouse SPI --- p.344 / Chapter B 58.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.345 / Chapter B 58.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.345 / Chapter B 58.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.345 / Chapter B 59.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using M13 reverse primer --- p.346 / Chapter B 59.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.346 / Chapter B 59.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.346 / Chapter B 60.1: --- DNA sequence ofcDNA subclone AJ1#4 (AP6 & ARP14) using Ml3 forward (-20) primer --- p.347 / Chapter B 60.2: --- Sequencing alignment of cDNA subclone AJ1#4 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.347 / Chapter B 60.3: --- Summary of sequence alignment of cDNA subclone AJ1#4 with mouse carboxylesterase --- p.347 / Chapter B 61.1: --- DNA sequence ofcDNA subclone AJ1#5 (AP6 & ARP14) using Ml3 reverse primer --- p.348 / Chapter B 61.2: --- Sequencing alignment of cDNA subclone AJ1#5 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.348 / Chapter B 61.3: --- Summary of sequence alignment of cDNA subclone AJ1#5 with mouse carboxylesterase --- p.348 / Chapter B 62.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using M13 forward (-20) primer --- p.349 / Chapter B 62.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.349 / Chapter B 62.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.349 / Chapter B 63.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using Ml3 reverse primer --- p.350 / Chapter B 63.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.350 / Chapter B 63.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.350 / Chapter B 64.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP 14) using Ml3 forward (-20) primer --- p.351 / Chapter B 64.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.351 / Chapter B 64.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse catalase --- p.351 / Chapter B 65.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP14) using Ml3 reverse primer --- p.352 / Chapter B 65.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.352 / Chapter B 65.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse SAC1 --- p.352 / Chapter B 66.1: --- DNA sequence ofcDNA subclone AL2#8 (AP7 & ARP15) using M13 forward (-20) primer --- p.353 / Chapter B 66.2: --- Sequencing alignment of cDNA subclone AL2#8 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pil) by BLAST searching against the National Center for Biotechnology Information database --- p.353 / Chapter B 66.3: --- Summary of sequence alignment of cDNA subclone AL2#8 with mouse HSD17β11 --- p.353 / Chapter B 67.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using Ml3 forward (-20) primer --- p.354 / Chapter B 67.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pll) by BLAST searching against the National Center for Biotechnology Information database --- p.354 / Chapter B 67.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.354 / Chapter B 68.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using M13 reverse primer --- p.355 / Chapter B 68.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxysteroid (17-beta) dehydrogenase 11 (Hsdl7β1l) by BLAST searching against the National Center for Biotechnology Information database --- p.355 / Chapter B 68.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.355 / Chapter B 69.1: --- DNA sequence of cDNA subclone AO1#2 (AP5 & ARP 10) 356 using Ml3 forward (-20) primer --- p.356 / Chapter B 69.2: --- Sequencing alignment of cDNA subclone AO1#2 with mouse 356 adipose differentiation related protein (ADFP) by BLAST searching against the National Center for Biotechnology Information database --- p.356 / Chapter B 69.3: --- Summary of sequence alignment of cDNA subclone AO1 #2 with 356 mouse ADFP --- p.356 / Chapter B 70.1: --- DNA sequence ofcDNA subclone AO1#5 (AP5 & ARP10) 357 using M13 reverse primer --- p.357 / Chapter B 70.2: --- Sequencing alignment of cDNA subclone AO1#5 with mouse 357 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.357 / Chapter B 70.3: --- Summary of sequence alignment of cDNA subclone AO1 #5 with 357 mouse Crot --- p.357 / Chapter B 71.1: --- DNA sequence ofcDNA subclone AO2#6 (AP5 & ARP10) 358 using Ml3 forward (-20) primer --- p.358 / Chapter B 71.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 358 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.358 / Chapter B 71.3: --- Summary of sequence alignment of cDNA subclone AO2#6 358 with mouse Rnase4 --- p.358 / Chapter B 72.1: --- DNA sequence of cDNA subclone AO2#6 (AP5 & ARP 10) 359 using Ml3 reverse primer --- p.359 / Chapter B 72.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 359 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.359 / Chapter B 72.3: --- Summary of sequence alignment of cDNA subclone A02#6 359 with mouse Rnase4 --- p.359 / Chapter B 73.1: --- DNA sequence ofcDNA subclone AO2#8 (AP5 & ARP10) 360 using Ml3 reverse primer --- p.360 / Chapter B 73.2: --- Sequencing alignment of cDNA subclone A02#8 with mouse 360 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.360 / Chapter B 73.3: --- Summary of sequence alignment of cDNA subclone AO2#8 with 360 mouse Crot --- p.360 / Chapter B 74.1: --- DNA sequence ofcDNA subclone AO8#2 (AP5 & ARP10) 361 using M13 forward (-20) primer --- p.361 / Chapter B 74.2: --- Sequencing alignment of cDNA subclone A08#2 with mouse 361 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.361 / Chapter B 74.3: --- Summary of sequence alignment of cDNA subclone AO8#2 with 361 mouse Rnase4 --- p.361 / Chapter B 75.1: --- DNA sequence of cDNA subclone AP4#4 (AP12 & ARP2) 362 using Ml3 forward (-20) primer --- p.362 / Chapter B 75.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 362 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.362 / Chapter B 75.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 362 mouse mitochondrion --- p.362 / Chapter B 76.1: --- DNA sequence ofcDNA subclone AP4#4 (AP12 & ARP2) 363 using Ml3 reverse primer --- p.363 / Chapter B 76.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 363 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.363 / Chapter B 76.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 363 mouse mitochondrion --- p.363

Page generated in 0.4711 seconds