• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oceanographic Instrument Simulator

Chen, Amy 01 March 2016 (has links) (PDF)
The Monterey Bay Aquarium Research Institute (MBARI) established the Free Ocean Carbon Enrichment (FOCE) experiment to study the long-term effects of decreased ocean pH levels by developing in-situ platforms [1]. Deep FOCE (dpFOCE) was the first platform, which was deployed in 950 meters of water in Monterey Bay. After the conclusion of dpFOCE, MBARI developed an open source shallow water FOCE (swFOCE) platform located at around 250 meter of water to facilitate worldwide shallow water experiments on FOCE [1][2]. A shallow water platform can be more ubiquitous than a deep-water platform as shallow water instruments are less expensive (as it does not have to be designed to withstand the pressure at deep ocean depths) and more easily deployed (they can be deployed right along the coast). The swFOCE experiment is an open source platform, and MBARI has made the plans available online to anyone interested in studying shallow water carbon enrichment. There is a gateway node what is connected to four sensor nodes within the swFOCE. In order to test the sensor node individually, an idea of designing an Oceanographic Instrument Simulator is purposed. The Oceanographic instrument simulator (OIS), described in this paper provides the means for MBARI engineers to test the swFOCE platform without attaching the numerous and expensive oceanographic instruments. The Oceanographic Instrument Simulator simulates the various scientific instruments that could be deployed in an actual experiment. The Oceanographic Instrument Simulator (OIS) system includes the designed circuit board, Arduino Due and an SD Card shield. The designed circuit board will be connected to a computer through a USB cable, and be connected to MBARI’s swFOCE sensor node through a serial connection. When a query is given from the sensor node, the Arduino Due will parse the data given from the sensor node, search through the pre-installed data in the SD card and return the appropriate data back to the sensor node. A user can also manually set up the input current through a computer terminal window to control the simulated signals from the PCB.
2

Experimental Analysis of Disc Thickness Variation Development in Motor Vehicle Brakes

Rodriguez, Alexander John, alex73@bigpond.net.au January 2006 (has links)
Over the past decade vehicle judder caused by Disc Thickness Variation (DTV) has become of major concern to automobile manufacturers worldwide. Judder is usually perceived by the driver as minor to severe vibrations transferred through the chassis during braking [1-9]. In this research, DTV is investigated via the use of a Smart Brake Pad (SBP). The SBP is a tool that will enable engineers to better understand the processes which occur in the harsh and confined environment that exists between the brake pad and disc whilst braking. It is also a tool that will enable engineers to better understand the causes of DTV and stick-slip the initiators of low and high frequency vibration in motor vehicle brakes. Furthermore, the technology can equally be used to solve many other still remaining mysteries in automotive, aerospace, rail or anywhere where two surfaces may come in contact. The SBP consists of sensors embedded into an automotive brake pad enabling it to measure pressure between the brake pad and disc whilst braking. The two sensor technologies investigated were Thick Film (TF) and Fibre Optic (FO) technologies. Each type was tested individually using a Material Testing System (MTS) at room and elevated temperatures. The chosen SBP was then successfully tested in simulated driving conditions. A preliminary mathematical model was developed and tested for the TF sensor and a novel Finite Element Analysis (FEA) model for the FO sensor. A new method called the Total Expected Error (TEE) method was also developed to simplify the sensor specification process to ensure consistent comparisons are made between sensors. Most importantly, our achievement will lead to improved comfort levels for the motorist.

Page generated in 0.0502 seconds