• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovering Protein Sequence-Structure Motifs and Two Applications to Structural Prediction

Tang, Thomas Cheuk Kai January 2004 (has links)
This thesis investigates the correlations between short protein peptide sequences and local tertiary structures. In particular, it introduces a novel algorithm for partitioning short protein segments into clusters of local sequence-structure motifs, and demonstrates that these motif clusters contain useful structural information via two applications to structural prediction. The first application utilizes motif clusters to predict local protein tertiary structures. A novel dynamic programming algorithm that performs comparably with some of the best existing algorithms is described. The second application exploits the capability of motif clusters in recognizing regular secondary structures to improve the performance of secondary structure prediction based on Support Vector Machines. Empirical results show significant improvement in overall prediction accuracy with no performance degradation in any specific aspect being measured. The encouraging results obtained illustrate the great potential of using local sequence-structure motifs to tackle protein structure predictions and possibly other important problems in computational biology.
2

Discovering Protein Sequence-Structure Motifs and Two Applications to Structural Prediction

Tang, Thomas Cheuk Kai January 2004 (has links)
This thesis investigates the correlations between short protein peptide sequences and local tertiary structures. In particular, it introduces a novel algorithm for partitioning short protein segments into clusters of local sequence-structure motifs, and demonstrates that these motif clusters contain useful structural information via two applications to structural prediction. The first application utilizes motif clusters to predict local protein tertiary structures. A novel dynamic programming algorithm that performs comparably with some of the best existing algorithms is described. The second application exploits the capability of motif clusters in recognizing regular secondary structures to improve the performance of secondary structure prediction based on Support Vector Machines. Empirical results show significant improvement in overall prediction accuracy with no performance degradation in any specific aspect being measured. The encouraging results obtained illustrate the great potential of using local sequence-structure motifs to tackle protein structure predictions and possibly other important problems in computational biology.

Page generated in 0.1161 seconds