• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo global de sistemas polinomiais planares no disco de Poincaré / Global study of planar polinomial systems on the Poincaré disk

Pena, Caio Augusto de Carvalho 24 September 2015 (has links)
Dado um sistema diferencial no plano, muito se questiona sobre o comportamento de suas soluções. Nas vizinhanças dos pontos singulares existem ferramentas que nos indicam o tipo e a estabilidade estrutural de cada um deles; são as chamadas formas normais. No entanto, o interesse vai mais além do conhecimento local das soluções em cada singularidade. Nesse trabalho apresentamos algumas ferramentas clássicas da teoria qualitativa das equações diferenciais ordinárias empregadas na investigação global dos campos de vetores polinomiais planares e as empregamos na investigação de duas famílias paramétricas de campos quadráticos encontradas no estudo dos campos com hipérboles invariantes. Dentre as ferramentas estudadas destacamos a classificação local das soluções em pontos singulares elementares e semi-elementares e a técnica de compactificação de Poincaré. / Given a planar differential system, many questions are raised about the behavior of their solutions. In the neighborhood of singular points there exist many tools which indicate their type and their structural stability; they are known as normal forms. However, the interest goes beyond the local behavior in the neighborhood of each singularity. In this dissertation we present some classical tools from the qualitative theory of ordinary differential equations which are usually applied to the global investigation of planar polinomial vector fields and we apply them to the investigation of two parametric families of quadratic fields from the study of the vector fields with invariant hyperbolas. Among the studied tools we highlight the local classification of the solutions around elementary and semi-elementary singular points and the technique known as Poincarés compactification.
2

Estudo global de sistemas polinomiais planares no disco de Poincaré / Global study of planar polinomial systems on the Poincaré disk

Caio Augusto de Carvalho Pena 24 September 2015 (has links)
Dado um sistema diferencial no plano, muito se questiona sobre o comportamento de suas soluções. Nas vizinhanças dos pontos singulares existem ferramentas que nos indicam o tipo e a estabilidade estrutural de cada um deles; são as chamadas formas normais. No entanto, o interesse vai mais além do conhecimento local das soluções em cada singularidade. Nesse trabalho apresentamos algumas ferramentas clássicas da teoria qualitativa das equações diferenciais ordinárias empregadas na investigação global dos campos de vetores polinomiais planares e as empregamos na investigação de duas famílias paramétricas de campos quadráticos encontradas no estudo dos campos com hipérboles invariantes. Dentre as ferramentas estudadas destacamos a classificação local das soluções em pontos singulares elementares e semi-elementares e a técnica de compactificação de Poincaré. / Given a planar differential system, many questions are raised about the behavior of their solutions. In the neighborhood of singular points there exist many tools which indicate their type and their structural stability; they are known as normal forms. However, the interest goes beyond the local behavior in the neighborhood of each singularity. In this dissertation we present some classical tools from the qualitative theory of ordinary differential equations which are usually applied to the global investigation of planar polinomial vector fields and we apply them to the investigation of two parametric families of quadratic fields from the study of the vector fields with invariant hyperbolas. Among the studied tools we highlight the local classification of the solutions around elementary and semi-elementary singular points and the technique known as Poincarés compactification.

Page generated in 0.129 seconds