• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception d'un système de partage de données adapté à un environnement de Fog Computing / A sharing data system adapted to a Fog Computing environment

Confais, Bastien 10 July 2018 (has links)
L’informatique utilitaire a évolué au fil des années pour aboutir à ce que nous appelons aujourd’hui le Cloud Computing. Pourtant, ces infrastructures ne sont pas adaptées pour répondre aux besoins de l’Internet des Objets ayant des besoins de calculs à faible latence malgré des ressources limitées. C’est pourquoi, en 2012, Cisco a proposé le paradigme de Fog Computing, consistant à répartir des serveurs sur de nombreux sites placés près des utilisateurs. Dans cette thèse, nous cherchons à créer une solution de stockage unifiée entre les différents sites de Fog. Notre première contribution consiste à évaluer si les solutions de stockage existantes peuvent être utilisées dans un tel environnement. Nous montrons que la solution de stockage InterPlanetary FileSystem (IPFS) reposant sur un protocole similaire à BitTorrent et une table de hachage distribuée (DHT) pour localiser les données est la plus prometteuse. Toutefois, le trafic réseau inter-sites généré impacte négativement les temps de lecture. Notre seconde contribution consiste à coupler IPFS au système de fichiers distribué RozoFS pour limiter ces échanges inter-sites dans le cas d’accès à des données stockées sur le site local. Enfin, notre dernier axe de recherche vise à localiser les données grâce à un protocole reposant sur un arbre des plus courts chemins, de façon à confiner le trafic réseau et à privilégier les nœuds atteignables avec une faible latence. Grâce à de nombreuses expérimentations sur la plateforme Grid’5000, nous montrons que le couplage à un système de fichiers réduit en moyenne de 34% les temps d’accès et que notre protocole de localisation permet un gain de 20% du temps de localisation des données. / Utility Computing has evolved for many years leading to the infrastructure we know today as Cloud Computing. Nevertheless, these infrastructures are unable to satisfy the needs of the Internet of Things which requires low latency computing despite limited resources. In 2012, Cisco proposed a paradigm called Fog Computing, consisting of deploying a huge number of small servers, spread on many sites located at the edge of the network, close to the end devices. In this thesis, we try to create a seamless storage solution between the different Fog sites. Our first contribution consists in comparing existing storage solution and check if they can be used in a such environment. We show that InterPlanetary FileSystem (IPFS), an object store relying on a BitTorrent like protocol and a Distributed Hash Table is a promising solution. Nevertheless, the amount of network traffic exchanged between the sites to locate the data is important and has a non-negligible impact on the overall performance. Our second contribution consists in coupling IPFS with RozoFS, a distributed filesystem deployed on each site to limit the use of the DHT when accessed data are stored on the local site. Finally, we proposed to replace the distributed hash table by a location mechanism relying on a shortest path tree built on the physical topology, in order to contain the network traffic and to first request nodes at a close location, reachable with a low latency. By performing many experiments on the Grid’5000 testbed, we show that the coupling of IPFS with a Scale-Out NAS reduces by 34 % in average the access times and that our protocol to locate the objects reduces by 20 % the time to locate the data.

Page generated in 0.1316 seconds