• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Codes with locality : constructions and applications to cryptographic protocols / Codes à propriétés locales : constructions et applications à des protocoles cryptographiques

Lavauzelle, Julien 30 November 2018 (has links)
Les codes localement corrigibles ont été introduits dans le but d'extraire une partie de l'information contenue dans un mot de code bruité, en effectuant un nombre limité de requêtes à ses symboles, ce nombre étant appelé la localité du code. Ces dernières années ont vu la construction de trois familles de tels codes, dont la localité est sous-linéaire en la taille du message, et le rendement est arbitrairement grand. Ce régime de paramètres est particulièrement intéressant pour des considérations pratiques.Dans cette thèse, nous donnons une rapide revue de littérature des codes localement corrigibles, avant d'en proposer un modèle combinatoire générique, à base de block designs. Nous définissons et étudions ensuite un analogue, dans le cas projectif, des relèvements affine de codes introduits par Guo, Kopparty et Sudan. Nous établissons par ailleurs plusieurs liens entre ces deux familles, pour finir par une analyse précise de la structure monomiale de ces codes dans le cas du relèvement plan.Une deuxième partie de la thèse se focalise sur l'application de ces codes à deux protocoles cryptographiques. D'abord, nous proposons un protocole de récupération confidentielle d'information (private information retrieval, PIR) à partir de codes basés sur des designs transversaux, dont la taille des blocs s'apparente à la localité d'un code localement corrigible. Les protocoles ainsi construits ont l'avantage de n'exiger aucun calcul pour les serveurs, et de présenter une faible redondance de stockage ainsi qu'une complexité de communication modérée. Ensuite, nous donnons une construction générique de preuve de récupérabilité (proof of retrievability, PoR) à base de codes admettant une riche structure d'équations de parité à petit poids. Nous en donnons finalement une analyse de sécurité fine ainsi que plusieurs instanciations fondées sur des codes à propriétés locales. / Locally correctable codes (LCCs) were introduced in order to retrieve pieces of information from a noisy codeword, by using a limited number of queries to its symbols, this number being called the locality. Three main families of LCCs reaching sublinear locality and arbitrarily high rate have been built so far. This specific range of parameters is of particular interest concerning practical applications of LCCs.In this thesis, after giving a state of the art for LCCs, we study how they can be built using block designs. We then give an analogue over projective spaces of the family of affine lifted codes introduced by Guo, Kopparty and Sudan. We exhibit several links between both families, and we give a precise analysis of the monomial structure of the code in the case of the lifting of order 2.The second part of the thesis focuses on the application of these codes to two cryptographic protocols. We first build a new private informatin retrieval (PIR) protocol from codes based on transversal designs, whose block size defines the locality of the code. Our construction features no computation on the server side, low storage overhead and moderate communication complexity. Then, we propose a new generic construction of proof-of-retrievability (PoR) that uses codes equipped with an elaborate structure of low-weight parity-check equations. We give a rigorous analysis of the security of our scheme, and we finally propose practical instantiations based on codes with locality.
2

Coding Schemes For Distributed Subspace Computation, Distributed Storage And Local Correctability

Vadlamani, Lalitha 02 1900 (has links) (PDF)
In this thesis, three problems have been considered and new coding schemes have been devised for each of them. The first is related to distributed function computation, the second to coding for distributed storage and the final problem is based on locally correctable codes. A common theme of the first two problems considered is distributed computation. The first problem is motivated by the problem of distributed function computation considered by Korner and Marton, where the goal is to compute XOR of two binary sources at the receiver. It has been shown that linear encoders give better sum rates for some source distributions as compared to the usual Slepian-Wolf scheme. We generalize this distributed function computation setting to the case of more than two sources and the receiver is interested in computing multiple linear combinations of the sources. Consider `m' random variables each of which takes values from a finite field and are associated with a certain joint probability distribution. The receiver is interested in the lossless computation of `s' linear combinations of the m random variables. By considering the set of all linear combinations of m random variables as a vector space V , this problem can be interpreted as a subspace-computation problem. For this problem, we develop three increasingly refined approaches, all based on linear encoders. The first two approaches which are termed as common code approach and selected subspace approach, use a common matrix to encode all the sources. In the common code approach, the desired subspace W is computed at the receiver, whereas in the selected subspace approach, possibly a larger subspace U which contains the desired subspace is computed. The larger subspace U which gives the minimum sum rate itself is based on a decomposition of vector space V into a chain of subspaces. The chain of subspaces is determined by the joint probability distribution of m random variables and a notion of normalized measure of entropy. The third approach is a nested code approach, where all the encoding matrices are nested and the same subspace U which is identified in the selected subspace approach is computed. We characterize the sum rates under all the three approaches. The sum rate under nested code approach is no larger than both selected subspace approach and Slepian-Wolf approach. For a large class of joint distributions and subspaces W , the nested code scheme is shown to improve upon Slepian-Wolf scheme. Additionally, a class of source distributions and subspaces are identified, for which the nested code approach is sum-rate optimal. In the second problem, we consider a distributed storage network, where data is stored across nodes in a network which are failure-prone. The goal is to store data reliably and efficiently. For a required level of reliability, it is of interest to minimise storage overhead and also of interest to perform node repair efficiently. Conventionally replication and maximum distance separable (MDS) codes are employed in such systems. Though replication is very efficient in terms of node repair, the storage overhead is high. MDS codes have low storage overhead but even the repair of a single failed node requires contacting a large number of nodes and downloading all their data. We consider two coding solutions that have recently been proposed, which enable efficient node repair in case of single node failure. The first solution called regenerating codes seeks to minimize the amount of data downloaded for node repair, while codes with locality attempt to minimize the number of helper nodes accessed. We extend these results in two directions. In the first one, we introduce the notion of codes with locality where the local codes have minimum distance more than 2 and hence can recover a code symbol locally even in the presence of multiple erasures. These codes are termed as codes with local erasure correction. We say that a code has information locality if there exists a set of message symbols, each of which is covered by local codes. A code is said to have all-symbol locality if all the code symbols are covered by local codes. An upper bound on the minimum distance of codes with information locality is presented and codes that are optimal with respect to this bound are constructed. We make a connection between codes with local erasure correction and concatenated codes. The second direction seeks to build codes that combine the advantages of both codes with locality as well as regenerating codes. These codes, termed here as codes with local regeneration, are codes with locality over a vector alphabet, in which the local codes themselves are regenerating codes. There are two well known classes of regenerating codes known as minimum storage regenerating (MSR) codes and minimum bandwidth regenerating (MBR) codes. We derive two upper bounds on the minimum distance of vector-alphabet codes with locality, one for the case when the local codes are MSR codes and the second for the case when the local codes are MBR codes. We also provide several optimal constructions of both classes of codes which achieve their respective minimum distance bounds with equality. The third problem deals with locally correctable codes. A block code of length `n' is said to be locally correctable, if there exists a randomized algorithm such that any one of the coordinates of the codeword can be recovered by querying at most `r' coordinates, even in presence of some fraction of errors. We study the local correctability of linear codes whose duals contain 4-designs. We also derive a bound relating `r' and fraction of errors that can be tolerated, when each instance of the randomized algorithm is `t'-error correcting instead of simple parity computation.

Page generated in 0.0713 seconds