• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Locally D-optimal Designs for Generalized Linear Models

January 2018 (has links)
abstract: Generalized Linear Models (GLMs) are widely used for modeling responses with non-normal error distributions. When the values of the covariates in such models are controllable, finding an optimal (or at least efficient) design could greatly facilitate the work of collecting and analyzing data. In fact, many theoretical results are obtained on a case-by-case basis, while in other situations, researchers also rely heavily on computational tools for design selection. Three topics are investigated in this dissertation with each one focusing on one type of GLMs. Topic I considers GLMs with factorial effects and one continuous covariate. Factors can have interactions among each other and there is no restriction on the possible values of the continuous covariate. The locally D-optimal design structures for such models are identified and results for obtaining smaller optimal designs using orthogonal arrays (OAs) are presented. Topic II considers GLMs with multiple covariates under the assumptions that all but one covariate are bounded within specified intervals and interaction effects among those bounded covariates may also exist. An explicit formula for D-optimal designs is derived and OA-based smaller D-optimal designs for models with one or two two-factor interactions are also constructed. Topic III considers multiple-covariate logistic models. All covariates are nonnegative and there is no interaction among them. Two types of D-optimal design structures are identified and their global D-optimality is proved using the celebrated equivalence theorem. / Dissertation/Thesis / Doctoral Dissertation Statistics 2018
2

Experimental Designs for Generalized Linear Models and Functional Magnetic Resonance Imaging

January 2014 (has links)
abstract: In this era of fast computational machines and new optimization algorithms, there have been great advances in Experimental Designs. We focus our research on design issues in generalized linear models (GLMs) and functional magnetic resonance imaging(fMRI). The first part of our research is on tackling the challenging problem of constructing exact designs for GLMs, that are robust against parameter, link and model uncertainties by improving an existing algorithm and providing a new one, based on using a continuous particle swarm optimization (PSO) and spectral clustering. The proposed algorithm is sufficiently versatile to accomodate most popular design selection criteria, and we concentrate on providing robust designs for GLMs, using the D and A optimality criterion. The second part of our research is on providing an algorithm that is a faster alternative to a recently proposed genetic algorithm (GA) to construct optimal designs for fMRI studies. Our algorithm is built upon a discrete version of the PSO. / Dissertation/Thesis / Doctoral Dissertation Statistics 2014

Page generated in 0.0764 seconds