• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Locating Arrays: Construction, Analysis, and Robustness

January 2018 (has links)
abstract: Modern computer systems are complex engineered systems involving a large collection of individual parts, each with many parameters, or factors, affecting system performance. One way to understand these complex systems and their performance is through experimentation. However, most modern computer systems involve such a large number of factors that thorough experimentation on all of them is impossible. An initial screening step is thus necessary to determine which factors are relevant to the system's performance and which factors can be eliminated from experimentation. Factors may impact system performance in different ways. A factor at a specific level may significantly affect performance as a main effect, or in combination with other main effects as an interaction. For screening, it is necessary both to identify the presence of these effects and to locate the factors responsible for them. A locating array is a relatively new experimental design that causes every main effect and interaction to occur and distinguishes all sets of d main effects and interactions from each other in the tests where they occur. This design is therefore helpful in screening complex systems. The process of screening using locating arrays involves multiple steps. First, a locating array is constructed for all possibly significant factors. Next, the system is executed for all tests indicated by the locating array and a response is observed. Finally, the response is analyzed to identify the significant system factors for future experimentation. However, simply constructing a reasonably sized locating array for a large system is no easy task and analyzing the response of the tests presents additional difficulties due to the large number of possible predictors and the inherent imbalance in the experimental design itself. Further complications can arise from noise in the system or errors in testing. This thesis has three contributions. First, it provides an algorithm to construct locating arrays using the Lovász Local Lemma with Moser-Tardos resampling. Second, it gives an algorithm to analyze the system response efficiently. Finally, it studies the robustness of the analysis to the heavy-hitters assumption underlying the approach as well as to varying amounts of system noise. / Dissertation/Thesis / Masters Thesis Computer Engineering 2018
2

Error Locating Arrays, Adaptive Software Testing, and Combinatorial Group Testing

Chodoriwsky, Jacob N. 17 July 2012 (has links)
Combinatorial Group Testing (CGT) is a process of identifying faulty interactions (“errors”) within a particular set of items. Error Locating Arrays (ELAs) are combinatorial designs that can be built from Covering Arrays (CAs) to not only cover all errors in a system (each involving up to a certain number of items), but to locate and identify the errors as well. In this thesis, we survey known results for CGT, as well as CAs, ELAs, and some other types of related arrays. More importantly, we give several new results. First, we give a new algorithm that can be used to test a system in which each component (factor) has two options (values), and at most two errors are present. We show that, for systems with at most two errors, our algorithm improves upon a related algorithm by Mart´ınez et al. in terms of both robustness and efficiency. Second, we give the first adaptive CGT algorithm that can identify, among a given set of k items, all faulty interactions involving up to three items. We then compare it, performance-wise, to current-best nonadaptive method that can identify faulty interactions involving up to three items. We also give the first adaptive ELA-building algorithm that can identify all faulty interactions involving up to three items when safe values are known. Both of our new algorithms are generalizations of ones previously given by Mart´ınez et al. for identifying all faulty interactions involving up to two items.
3

Error Locating Arrays, Adaptive Software Testing, and Combinatorial Group Testing

Chodoriwsky, Jacob N. 17 July 2012 (has links)
Combinatorial Group Testing (CGT) is a process of identifying faulty interactions (“errors”) within a particular set of items. Error Locating Arrays (ELAs) are combinatorial designs that can be built from Covering Arrays (CAs) to not only cover all errors in a system (each involving up to a certain number of items), but to locate and identify the errors as well. In this thesis, we survey known results for CGT, as well as CAs, ELAs, and some other types of related arrays. More importantly, we give several new results. First, we give a new algorithm that can be used to test a system in which each component (factor) has two options (values), and at most two errors are present. We show that, for systems with at most two errors, our algorithm improves upon a related algorithm by Mart´ınez et al. in terms of both robustness and efficiency. Second, we give the first adaptive CGT algorithm that can identify, among a given set of k items, all faulty interactions involving up to three items. We then compare it, performance-wise, to current-best nonadaptive method that can identify faulty interactions involving up to three items. We also give the first adaptive ELA-building algorithm that can identify all faulty interactions involving up to three items when safe values are known. Both of our new algorithms are generalizations of ones previously given by Mart´ınez et al. for identifying all faulty interactions involving up to two items.
4

Error Locating Arrays, Adaptive Software Testing, and Combinatorial Group Testing

Chodoriwsky, Jacob N. January 2012 (has links)
Combinatorial Group Testing (CGT) is a process of identifying faulty interactions (“errors”) within a particular set of items. Error Locating Arrays (ELAs) are combinatorial designs that can be built from Covering Arrays (CAs) to not only cover all errors in a system (each involving up to a certain number of items), but to locate and identify the errors as well. In this thesis, we survey known results for CGT, as well as CAs, ELAs, and some other types of related arrays. More importantly, we give several new results. First, we give a new algorithm that can be used to test a system in which each component (factor) has two options (values), and at most two errors are present. We show that, for systems with at most two errors, our algorithm improves upon a related algorithm by Mart´ınez et al. in terms of both robustness and efficiency. Second, we give the first adaptive CGT algorithm that can identify, among a given set of k items, all faulty interactions involving up to three items. We then compare it, performance-wise, to current-best nonadaptive method that can identify faulty interactions involving up to three items. We also give the first adaptive ELA-building algorithm that can identify all faulty interactions involving up to three items when safe values are known. Both of our new algorithms are generalizations of ones previously given by Mart´ınez et al. for identifying all faulty interactions involving up to two items.

Page generated in 0.0887 seconds