Spelling suggestions: "subject:"locationbased search"" "subject:"locationbased search""
1 |
Hierarchical Geographical Identifiers As An Indexing Technique For Geographic Information RetrievalLakey, John Christopher 13 December 2008 (has links)
Location plays an ever increasing role in modern web-based applications. Many of these applications leverage off-the-shelf search engine technology to provide interactive access to large collections of data. Unfortunately, these commodity search engines do not provide special support for location-based indexing and retrieval. Many applications overcome this constraint by applying geographic bounding boxes in conjunction with range queries. We propose an alternative technique based on geographic identifiers and suggest it will yield faster query evaluation and provide higher search precision. Our experiment compared the two approaches by executing thousands of unique queries on a dataset with 1.8 million records. Based on the quantitative results obtained, our technique yielded drastic performance improvements in both query execution time and precision.
|
2 |
A method for location based search for enhancing facial feature designAl-dahoud, Ahmad, Ugail, Hassan January 2016 (has links)
No / In this paper we present a new method for accurate real-time facial feature detection. Our method is based on local feature detection and enhancement. Previous work in this area, such as that of Viola and Jones, require looking at the face as a whole. Consequently, such approaches have increased chances of reporting negative hits. Furthermore, such algorithms require greater processing power and hence they are especially not attractive for real-time applications. Through our recent work, we have devised a method to identify the face from real-time images and divide it into regions of interest (ROI). Firstly, based on a face detection algorithm, we identify the face and divide it into four main regions. Then, we undertake a local search within those ROI, looking for specific facial features. This enables us to locate the desired facial features more efficiently and accurately. We have tested our approach using the Cohn-Kanade’s Extended Facial Expression (CK+) database. The results show that applying the ROI has a relatively low false positive rate as well as provides a marked gain in the overall computational efficiency. In particular, we show that our method has a 4-fold increase in accuracy when compared to existing algorithms for facial feature detection.
|
3 |
A computational framework for measuring the facial emotional expressionsUgail, Hassan, Aldahoud, Ahmad A.A. 20 March 2022 (has links)
No / The purpose of this chapter is to discuss and present a computational framework for detecting and analysing facial expressions efficiently. The approach here is to identify the face and estimate regions of facial features of interest using the optical flow algorithm. Once the regions and their dynamics are computed a rule based system can be utilised for classification. Using this framework, we show how it is possible to accurately identify and classify facial expressions to match with FACS coding and to infer the underlying basic emotions in real time.
|
4 |
Dealing with Geographic Information in Location-Based Search EnginesMr Saeid Asadi Unknown Date (has links)
No description available.
|
Page generated in 0.1046 seconds