• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 433
  • 158
  • 145
  • 53
  • 40
  • 19
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1017
  • 145
  • 101
  • 99
  • 96
  • 91
  • 91
  • 90
  • 76
  • 67
  • 66
  • 65
  • 64
  • 64
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The role of non-muscular and muscular forces in lower extremity swing motions

Phillips, Sally J., January 1978 (has links)
Thesis--Wisconsin. / Vita. Includes bibliographical references (leaves 284-290).
12

A data-driven model of pedestrian movement /

Casburn, Ledah. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 45-47). Also available on the World Wide Web.
13

The effect of fin-clipping on the cruising speed of goldfish (Carassius auratus L.) & cohoe salmon fry (Oncorphynchus Kisutch Walbaum)

Radcliffe, Roland Wootton January 1949 (has links)
Goldfish (Carassius auratus L.) and cohoe salmon fry (Oncorhynchus kisutch Walbaum) were acclimatized to 20°C. and 3°C. respectively. The fish were placed one at a time once a day for ten days in a rotating annular chamber and the cruising speed was found. Then various fin combinations were clipped off and the fish were given ten more trials. The mean cruising speeds before and after clipping were compared. The clipped fish suffered no loss in ability to swim at a constant rate. Cruising-speed and length, and cruising speed and weight of clipped and unclipped goldfish were correlated. / Science, Faculty of / Zoology, Department of / Graduate
14

Stability and control of legged locomotion systems /

Pai, Ammembal Lakshmana January 1971 (has links)
No description available.
15

Stability and control of legged locomotion systems /

Pai, Ammembal Lakshmana January 1971 (has links)
No description available.
16

A Theoretical study of gaits for legged locomotion systems /

Sun, Shu-Shen January 1974 (has links)
No description available.
17

Interactive control of a six-legged vehicle with optimization of both stability and energy /

Orin, David Edward January 1976 (has links)
No description available.
18

Case studies in multi-contact locomotion

Slovich, Michael 26 July 2012 (has links)
The problem of performing complex maneuvers in challenging terrains is crucial to the advancement of legged robots and assistive devices, yet little progress has been made in exploring practical solutions to operate in these environments. In this thesis, we tackle the problem by developing strategies to predict a robot's center of mass (CoM) behavior based on contact constraints, and any arbitrary CoM path for situations in which the system has single or multiple points of contact through which external reaction forces may be applied. Our method consists of first leveraging previous work on multi-contact dynamics to derive reaction force behavior from internal tension force profiles and kinematic CoM trajectories. We then study the nonlinear dynamics of single contact phases along arbitrary paths and employ numerical integration to derive state-space approximations of CoM behavior. We use this theoretical framework to synthesize complex maneuvers in various terrains by means of a motion planner in which we determine step transition sequences for continuous motions involving contact profiles which vary with time. Furthermore, we validate our strategy through several comparative case studies, examining the motion of a human subject performing a difficult maneuver in an aggressive terrain. We then seed our motion planning algorithm with a limited set of parameters chosen to match those of a human subject and predict CoM behavior for the same motion pattern. These case studies show that the estimated CoM behaviors generated from our planning algorithm closely resemble the behavior of the human subject and therefore validate our methods. / text
19

Adaptation de la locomotion à un champ de force élastique appliqué à la jambe : rôle de la durée d'exposition /

Fortin, Karine, January 2008 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2008. / Bibliogr.: f. [69]-77. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
20

Kinematics and mechanics of fast-starts of rainbow trout Oncorhynchus mykiss and northern pike Esox lucius

Harper, David Gordon January 1990 (has links)
Film is commonly used to estimate the fast-start performance of fish. An analysis of hypothetical, film-derived, and accelerometer-measured acceleration-time data of fish fast-starts indicates that the total error in film studies is the sum of the sampling frequency error (i.e., the error due to over-smoothing at low film speeds) and measurement error. The error in film based studies on the acceleration performance of fish is estimated to be about 33 to 100% of the maximum acceleration, suggesting that other methods of estimating acceleration should be employed. The escape performance of rainbow trout Oncorhynchus mykiss and northern pike Esox lucius (mean lengths 0.32 m and 0.38 m, respectively) were measured here with subcutaneously implanted accelerometers. Acceleration-time plots reveal two types of escape fast-starts for trout and three for pike. Simultaneous high-speed ciné films demonstrate a kinematic basis for these differences. Trout performing C-shaped fast-starts produce a unimodal acceleration-time plot (type I), while during S-shaped fast-starts a bimodal acceleration-time plot (type II) results. Pike also exhibit similar type I and II fast-starts, but also execute a second S-shaped fast-start that does not involve a net change of direction. This is characterized by a trimodal acceleration-time plot (type III). Intraspecific and interspecific comparisons of displacement, time, mean and maximum velocity, and mean and maximum acceleration rate indicate that fast-start performance is significantly higher for pike than for trout, for all performance parameters. This indicates that performance is related to body form. Overall mean maximum acceleration rates for pike were 120.2 ± 20 m s⁻² (x ± 2S.E.) and 59.7 ± 8.3 m s⁻² for trout. Performance values directly measured from the accelerometers exceed those previously reported. Maximum acceleration rates for single events reach 97.8 m s⁻² and 244.9 m s⁻² for trout and pike, respectively. Maximum final velocities of 7.06 m s⁻¹ (18.95 L s⁻¹, where L is body length) were observed for pike and 4.19 m s⁻¹ (13.09 L s⁻¹) for trout; overall mean maximum velocities were 2.77 m s⁻¹ for trout and 3.97 m s⁻¹ for pike. The fast-start performance of pike during prey capture was also measured with subcutaneously implanted accelerometers. Acceleration-time plots and simultaneous high-speed cin6 films reveal four behaviours with characteristic kinematics and mechanics. As for the escape data, fast-start types are identified by the number of large peaks that appear in the acceleration-time and velocity-time data. Comparisons of mean performance were made between each type of feeding fast-start. Type I fast-starts were of significantly (i.e., p < 0.05) shorter duration (0.084 s) and displacement (0.132 m) than type III (0.148 s and 0.235 m) and type IV (0.189 s and 0.307 m) behaviours, and higher mean and maximum acceleration (38.6 and 130.3 m s⁻², respectively) than the type II (26.6 and 95.8 m s⁻²), type III (22.0 and 91.2 m s⁻²), and type IV (18.0 and 66.6 m s⁻²) behaviours. The type II behaviours were also of shorter duration and displacement, and of higher mean acceleration than type IV fast-starts, and were of significantly shorter duration than the type LU behaviours. Prey capture performance was compared to escapes by the same individuals. When data are combined, regardless of mechanical type, mean acceleration (37.6 versus 25.5 m s⁻²), maximum acceleration (120.2 versus 95.9 m s⁻²), mean velocity (1.90 versus 1.57 m s⁻¹), and maximum velocity (3.97 versus 3.09 m s⁻¹) were larger, and duration shorter (0.108 versus 0.133 s) during escapes than during prey capture. No differences were found through independent comparisons of the performance of feeding and escape types II and III, but type I escapes had significantly higher mean velocity (2.27 versus 1.58 m s⁻¹), maximum velocity (4.70 versus 3.12 m s⁻¹), and mean acceleration (54.7 versus 38.6 m s⁻²) than the type I feeding behaviours. Prey capture performance was also related to prey size, apparent prey size (defined as the angular size of the prey on the pike's retina), and strike distance (the distance from the pike to the prey at the onset of the fast-start). Mean and maximum acceleration increased with apparent size and decreased with strike distance, while the duration of the event increased with strike distance and decreased with apparent size. No relation was found between the actual prey size and any performance parameter. Strike distance ranged from 0.087 to 0.439 m, and decreased as the apparent size increased from 2.6 to 9.9° (r² = 0.75). The type I behaviour was usually employed when the strike distance was small and the prey appeared large. As strike distance increased and apparent size decreased, there was a progressive selection of type II, then III, then IV behaviours. / Science, Faculty of / Zoology, Department of / Graduate

Page generated in 0.0783 seconds