• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Digital Video Watermarking Robust to Geometric Attacks and Compressions

Liu, Yan 03 October 2011 (has links)
This thesis focuses on video watermarking robust against geometric attacks and video compressions. In addition to the requirements for an image watermarking algorithm, a digital video watermarking algorithm has to be robust against advanced video compressions, frame loss, frame swapping, aspect ratio change, frame rate change, intra- and inter-frame filtering, etc. Video compression, especially, the most efficient compression standard, H.264, and geometric attacks, such as rotation and cropping, frame aspect ratio change, and translation, are considered the most challenging attacks for video watermarking algorithms. In this thesis, we first review typical watermarking algorithms robust against geometric attacks and video compressions, and point out their advantages and disadvantages. Then, we propose our robust video watermarking algorithms against Rotation, Scaling and Translation (RST) attacks and MPEG-2 compression based on the logpolar mapping and the phase-only filtering method. Rotation or scaling transformation in the spatial domain results in vertical or horizontal shift in the log-polar mapping (LPM) of the magnitude of the Fourier spectrum of the target frame. Translation has no effect in this domain. This method is very robust to RST attacks and MPEG-2 compression. We also demonstrate that this method can be used as a RST parameters detector to work with other watermarking algorithms to improve their robustness to RST attacks. Furthermore, we propose a new video watermarking algorithm based on the 1D DFT (one-dimensional Discrete Fourier Transform) and 1D projection. This algorithm enhances the robustness to video compression and is able to resist the most advanced video compression, H.264. The 1D DFT for a video sequence along the temporal domain generates an ideal domain, in which the spatial information is still kept and the temporal information is obtained. With detailed analysis and calculation, we choose the frames with highest temporal frequencies to embed the fence-shaped watermark pattern in the Radon transform domain of the selected frames. The performance of the proposed algorithm is evaluated by video compression standards MPEG-2 and H.264; geometric attacks such as rotation, translation, and aspect-ratio changes; and other video processing. The most important advantages of this video watermarking algorithm are its simplicity, practicality and robustness.
2

Digital Video Watermarking Robust to Geometric Attacks and Compressions

Liu, Yan 03 October 2011 (has links)
This thesis focuses on video watermarking robust against geometric attacks and video compressions. In addition to the requirements for an image watermarking algorithm, a digital video watermarking algorithm has to be robust against advanced video compressions, frame loss, frame swapping, aspect ratio change, frame rate change, intra- and inter-frame filtering, etc. Video compression, especially, the most efficient compression standard, H.264, and geometric attacks, such as rotation and cropping, frame aspect ratio change, and translation, are considered the most challenging attacks for video watermarking algorithms. In this thesis, we first review typical watermarking algorithms robust against geometric attacks and video compressions, and point out their advantages and disadvantages. Then, we propose our robust video watermarking algorithms against Rotation, Scaling and Translation (RST) attacks and MPEG-2 compression based on the logpolar mapping and the phase-only filtering method. Rotation or scaling transformation in the spatial domain results in vertical or horizontal shift in the log-polar mapping (LPM) of the magnitude of the Fourier spectrum of the target frame. Translation has no effect in this domain. This method is very robust to RST attacks and MPEG-2 compression. We also demonstrate that this method can be used as a RST parameters detector to work with other watermarking algorithms to improve their robustness to RST attacks. Furthermore, we propose a new video watermarking algorithm based on the 1D DFT (one-dimensional Discrete Fourier Transform) and 1D projection. This algorithm enhances the robustness to video compression and is able to resist the most advanced video compression, H.264. The 1D DFT for a video sequence along the temporal domain generates an ideal domain, in which the spatial information is still kept and the temporal information is obtained. With detailed analysis and calculation, we choose the frames with highest temporal frequencies to embed the fence-shaped watermark pattern in the Radon transform domain of the selected frames. The performance of the proposed algorithm is evaluated by video compression standards MPEG-2 and H.264; geometric attacks such as rotation, translation, and aspect-ratio changes; and other video processing. The most important advantages of this video watermarking algorithm are its simplicity, practicality and robustness.
3

Digital Video Watermarking Robust to Geometric Attacks and Compressions

Liu, Yan 03 October 2011 (has links)
This thesis focuses on video watermarking robust against geometric attacks and video compressions. In addition to the requirements for an image watermarking algorithm, a digital video watermarking algorithm has to be robust against advanced video compressions, frame loss, frame swapping, aspect ratio change, frame rate change, intra- and inter-frame filtering, etc. Video compression, especially, the most efficient compression standard, H.264, and geometric attacks, such as rotation and cropping, frame aspect ratio change, and translation, are considered the most challenging attacks for video watermarking algorithms. In this thesis, we first review typical watermarking algorithms robust against geometric attacks and video compressions, and point out their advantages and disadvantages. Then, we propose our robust video watermarking algorithms against Rotation, Scaling and Translation (RST) attacks and MPEG-2 compression based on the logpolar mapping and the phase-only filtering method. Rotation or scaling transformation in the spatial domain results in vertical or horizontal shift in the log-polar mapping (LPM) of the magnitude of the Fourier spectrum of the target frame. Translation has no effect in this domain. This method is very robust to RST attacks and MPEG-2 compression. We also demonstrate that this method can be used as a RST parameters detector to work with other watermarking algorithms to improve their robustness to RST attacks. Furthermore, we propose a new video watermarking algorithm based on the 1D DFT (one-dimensional Discrete Fourier Transform) and 1D projection. This algorithm enhances the robustness to video compression and is able to resist the most advanced video compression, H.264. The 1D DFT for a video sequence along the temporal domain generates an ideal domain, in which the spatial information is still kept and the temporal information is obtained. With detailed analysis and calculation, we choose the frames with highest temporal frequencies to embed the fence-shaped watermark pattern in the Radon transform domain of the selected frames. The performance of the proposed algorithm is evaluated by video compression standards MPEG-2 and H.264; geometric attacks such as rotation, translation, and aspect-ratio changes; and other video processing. The most important advantages of this video watermarking algorithm are its simplicity, practicality and robustness.
4

Digital Video Watermarking Robust to Geometric Attacks and Compressions

Liu, Yan January 2011 (has links)
This thesis focuses on video watermarking robust against geometric attacks and video compressions. In addition to the requirements for an image watermarking algorithm, a digital video watermarking algorithm has to be robust against advanced video compressions, frame loss, frame swapping, aspect ratio change, frame rate change, intra- and inter-frame filtering, etc. Video compression, especially, the most efficient compression standard, H.264, and geometric attacks, such as rotation and cropping, frame aspect ratio change, and translation, are considered the most challenging attacks for video watermarking algorithms. In this thesis, we first review typical watermarking algorithms robust against geometric attacks and video compressions, and point out their advantages and disadvantages. Then, we propose our robust video watermarking algorithms against Rotation, Scaling and Translation (RST) attacks and MPEG-2 compression based on the logpolar mapping and the phase-only filtering method. Rotation or scaling transformation in the spatial domain results in vertical or horizontal shift in the log-polar mapping (LPM) of the magnitude of the Fourier spectrum of the target frame. Translation has no effect in this domain. This method is very robust to RST attacks and MPEG-2 compression. We also demonstrate that this method can be used as a RST parameters detector to work with other watermarking algorithms to improve their robustness to RST attacks. Furthermore, we propose a new video watermarking algorithm based on the 1D DFT (one-dimensional Discrete Fourier Transform) and 1D projection. This algorithm enhances the robustness to video compression and is able to resist the most advanced video compression, H.264. The 1D DFT for a video sequence along the temporal domain generates an ideal domain, in which the spatial information is still kept and the temporal information is obtained. With detailed analysis and calculation, we choose the frames with highest temporal frequencies to embed the fence-shaped watermark pattern in the Radon transform domain of the selected frames. The performance of the proposed algorithm is evaluated by video compression standards MPEG-2 and H.264; geometric attacks such as rotation, translation, and aspect-ratio changes; and other video processing. The most important advantages of this video watermarking algorithm are its simplicity, practicality and robustness.
5

Rotation, Scale And Translation Invariant Automatic Target Recognition Using Template Matching For Satellite Imagery

Erturk, Alp 01 January 2010 (has links) (PDF)
In this thesis, rotation, scale and translation (RST) invariant automatic target recognition (ATR) for satellite imagery is presented. Template matching is used to realize the target recognition. However, unlike most of the studies of template matching in the literature, RST invariance is required in our problem, since most of the time we will have only a small number of templates of each target, while the targets to be recognized in the scenes will have various orientations, scaling and translations. RST invariance is studied in detail and implemented with some of the competing methods in the literature, such as Fourier-Mellin transform and bipectrum combined with log-polar mapping. Phase correlation and normalized cross-correlation are used as similarity metrics. Encountered drawbacks were overcome with additional operations and modifications of the algorithms. ATR using reconstruction of the target image with respect to the template, based on bispectrum, log-polar mapping and phase correlation outperformed the other methods and successful recognition was realized for various target types, especially for targets on relatively simpler backgrounds, i.e. containing little or no other objects.

Page generated in 0.0463 seconds