• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On multifractality, Schwarzian derivative and asymptotic variance of whole-plane SLE / Sur la mutifractalité, la dérivée schwarziene et la variance asymptotique de whole-plane SLE

Ho, Xuan Hieu 05 December 2016 (has links)
Soit f une instance du whole-plane $\SLE_\kappa$ : on sait que pour certaines valeurs de κ, p les moments dérivés $\mathbb{E}(\vert f'(z) \vert^p)$ peuvent être écrits sous une forme fermée, étude qui a permis de mettre au jour une nouvelle phase du spectre des moyennes intégrales. Le but de cette thèse est une étude des moments généralisés $\frac{\vert f'(z) \vert^p}{\vert f(z) \vert^q}$ : cette étude permet de confirmer la structure algébrique riche du whole-plane SLE. On montre que les formes fermées des moments mixtes $\mathbb{E}\big(\frac{\vert f'(z) \vert^p}{\vert f(z) \vert^q}\big)$ apparaissent sur une famille dénombrable de paraboles du plan (p, q), en étendant les équations de Beliaev-Smirnov à ce cas. Nous introduisons également le spectre généralisé β(p, q; κ), correspondant au comportement asymptotiques des moyennes intégrales mixtes. Le spectre généralisé moyen du whole-plane SLE prend quatre formes possibles, séparés par cinq séparatrices dans $\R^2$. Nous proposons également une approche semblable pour la dérivée Schwarziene S(f)(z) de l’application de SLE. Les calculs sur les équations de Beliaev-Smirnov d’une certaine générale forme de moment mène à une formulation explicite de $\mathbb{E}(S(f)(z))$ . Nous étudions finalement la variance asymptotique de McMullen et démontrons une relation entre la croissance infinitésimale du spectre de la moyenne intégrale et la variance asymptotique pour SLE₂. / Let f an instance of the whole-plane $\SLE_\kappa$ conformal map from the unit disk D to the slit plane: We know that for certain values of κ, p the derivative moments $\mathbb{E}(\vert f'(z) \vert^p)$ can be written in a closed form, study that has updated a new phase of the integral means spectrum. The goal of this thesis is a study on generalized moments $\frac{\vert f'(z) \vert^p}{\vert f(z) \vert^q}$ : ΒββThis study permit confirm the rich algebraic structure of the whole-plane version of SLE. It will be showed that closed forms of the mixed moments E mixtes $\mathbb{E}\big(\frac{\vert f'(z) \vert^p}{\vert f(z) \vert^q}\big)$ can be obtained on a countable family of parabolas in the moment plane (p, q), by extending the so-called Beliaev–Smirnov equation to this case. We also introduce the generalized integral means spectrum, β(p, q; κ), corresponding to the singular behavior of the mixed moments. The average generalized spectrum of whole-plane SLE takes four possible forms, separated by five phase transition lines in $\R^2$. We also propose a similar approach for the Schwarzian derivative S(f)(z) of SLE maps. Computations on the Beliaev–Smirnov equation of a certain general form of moment lead to an explicit formula of $\mathbb{E}(S(f)(z))$ . We finally study the McMullen asymptotic variance and prove a relation between the infinitesimal growth of the integral mean spectrum and the asymptotic variance in an expectation sense for SLE₂.

Page generated in 0.0526 seconds