Spelling suggestions: "subject:"diazolium perenne--KwaZulu-Natal."" "subject:"buxifolium perenne--KwaZulu-Natal.""
1 |
Managing Lolium perenne L. (perennial ryegrass) in a sub-tropical environment in KwaZulu-Natal, South Africa.Mckenzie, Frank Ralph. January 1994 (has links)
Lolium perenne L. (perennial ryegrass) generally fails to persist
under the sub-tropical cpnditions of South Africa. Furthermore,
little research data are available on how to manage this species
locally. This study was designed to identify the management
options, particularly with r espect to grazing defoliation, which
would help enhance the longevity of perennial ryegrass pastures.
This was addressed by:
1) reviewing on-farm management practices of perennial
ryegrass in KwaZulu-Natal;
2) conducting a detailed two-year field study of the effects
of grazing frequency (HF, MF and LF = high, medium and low
frequency, respectively) and intensity (HI, MI and LI =
high, medium and low intensity, respectively), rotationally
applied with the addition of a continuous grazing treatment
(CG), on parameters linked to persistency.
tiller population dynamics, dry matter
These included:
(DM) yield and
quality, perennial ryegrass vigour, weed invasion and root
development; and
3) examining effects of different levels of applied nitrogen
(N) during the establishment year on various parameters
linked to persistency. These included: tiller population
densities, DM yield and quality, perennial ryegrass vigour,
weed invasion and root development.
The review of on-farm management practices of perennial ryegrass
growers in KwaZulu-Natal revealed that reasonably high rates of
N application (e.g. 350 and 250 kg N ha¯¹ a¯¹ to perennial ryegrass
as pure and clover-based stands, respectively) are important for
pasture survival. However, a consistent distribution of the
applied N is even more important (i. e. at least seven split
applications of N onto pure stands of perennial ryegrass and five
onto perennial ryegrass-clover). In terms of grazing management,
the period of absence of animals from the pasture during summer
was identified as the most important grazing variable affecting
pasture survival (i.e. ≥ 21 days). Also, the length of the
period of occupation by animals should be as short as possible,
particularly during summer (i. e. ≤ 3 days). Paying careful attention to summer irrigation is also an important variable
contributing to pasture survival. Grazing intensity was not
highlighted as an important contributor to pasture survival.
In terms of tillering potential, DM yield and quality (cellulose
dry matter disappearance and herbage N) and perennial ryegrass
vigour, perennial ryegrass followed definite seasonal trends.
These were highest during autumn and spring and were lowest
during the mid to late summer period. Perennial ryegrass was
most susceptible to general sward degradation through poor
management during the mid to late summer period when the danger
from weed invasion is greatest and its growth potential, vigour
and tillering abilities are lowest within these seasonal
periods, grazing defoliation produced marked effects. In terms
of tiller survival, DM yield, plant vigour, reduced weed invasion
and root production, treatments incorporating low frequency
grazing (e.g. LFLI and LFHI) generally out-performed (P≤0.05)
those incorporating high frequency grazing, irrespective of the
intensity (e.g. HFHI, HFLI, and continuous grazing (CG)). The
defoliation treatment incorporating medium frequency and
intensity (MFMI) (currently the recommended defoliation strategy
for perennial ryegrass) was also out-performed in many instances
(P~0.05) by the low frequency treatments (e.g. LFHI and LFLI) .
During the establishment year, increasing levels of applied N
increased (P≤O. 05) perennial ryegrass DM yields and herbage
quality. Models predicting the response of DM yield and quality
to applied N suggest linear responses up to 720 kg N ha¯¹ a¯¹.
Further refinement of such models and the inclusion of animal
production parameters is recommended. Maximum (P≤0.05) tiller
population densities occurred at applied N levels of 480 kg ha¯¹
a¯¹. Perennial ryegrass vigour increased (P≤O. 05) with increasing
levels of applied N up to 480 kg h¯¹ a¯¹, but individual tiller
vigour decreased. Increasing levels of applied N up to 360 kg
ha¯¹ a¯¹ suppressed (P≤O. 05) weed tiller densities. Increasing
levels of applied N (up to 600 kg h¯¹) increased (P≤O. 05) the
root organic matter (OM) per unit volume of soil in the top 5 cm
of the soil and decreased root OM per unit volume in the 10 - 20
cm soil depth category. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1994.
|
2 |
The effect of application of nitrogen, phosphorus, potassium and sulphur fertilisers to a perennial ryegrass sward on yield, quality and apparent intake by dairy cows.Findlay, Nicola Jean. January 2010 (has links)
Perennial ryegrass is an intensive, temperate pasture grass that responds well to applied fertiliser.
The purpose of this project was to study the effects of fertiliser on the productivity and quality of
perennial ryegrass in KwaZulu-Natal and how this impacts on animal intake. It was hypothesised
that over-application of fertiliser to a perennial ryegrass pasture would negatively affect the quality
of the herbage for grazing by dairy cattle and that intake would be affected. Thus the project
aimed to assess the effects of applied fertiliser on yield, quality and intake of an established
perennial ryegrass pasture.
The trial consisted of a set of six separate experiments. Each experiment focused on the
interaction between two of the major nutrient elements nitrogen (N), phosphorus (P), potassium
(K) and sulphur (S). The experiments (NxP, NxK, NxS, PxK, PxS and KxS) were managed
separately to avoid possible transfer of nutrients during grazing, which would result in the
contamination of treatments. Each factor had three levels (low, medium and high), giving a total of
nine treatments per experiment. Each of the experiments was replicated three times in a
randomised block design.
Increased fertiliser N application rates increased perennial ryegrass yield with a pattern of
diminishing return, where split applications above 40 kg N ha-1 produced smaller increases in yield
when compared with the response at lower applications of N. Applied P, K and S did not affect
yield, suggesting that even the lowest application levels were sufficient to not limit production.
Nitrogen application affected apparent intake, but it is suggested that this is due to the yield effect
rather than a direct effect of N on apparent intake. The application of P, K and S did not affect
apparent intake.
Results from this study showed that the quality of perennial ryegrass herbage, especially in terms
of feed value to dairy cows, can be significantly affected by applied fertiliser. The extent of the
response was affected by sampling date (i.e. time of year) and this must be taken into account
when planning a fertiliser management strategy. This is particularly so with respect to N fertiliser
recommendations.
Crude protein (CP) content of herbage increased with increasing levels of applied N and the
extent of the response was influenced by season. P, K and S did not affect CP concentration in
herbage, except in the PxK experiment where increased levels of K lowered herbage CP. Applied
N considerably increased the concentration of non-protein nitrogen (NPN) in perennial ryegrass
herbage. P and S did not affect NPN levels, whereas applied K decreased NPN content in the
iv
NxK and PxK experiments. Non-structural carbohydrate (NSC) content of herbage was decreased
by applied N but was unaffected by applications of P, K and S. Neither neutral detergent fibre
(NDF) nor acid detergent fibre (ADF) was affected by applied fertiliser. In this study herbage P
declined and herbage Ca increased with increasing levels of applied N. The addition of fertiliser K
resulted in lower herbage Ca values. There was no herbage S response to applied fertiliser in this
study.
Classification and regression tree (CART) analysis identified the primary determinant of apparent
intake in experiments containing N as a factor as the amount of material available to be grazed
and that NSC, NPN and ADF are also determinants of apparent intake. Cows do not regulate diet
choice within the short-term time frame of a meal. Thus intake is determined by short-term needs
rather than by meeting long-term nutrient requirements. Fibre creates physical fill within the
rumen, thus restricting intake. High NPN content is associated with high nitrate values. The
reduction in intake of herbage with high nitrate content may be due to reduced palatability or to a
negative feedback system limiting the intake of nitrate and ammonium. Increased NSC content is
associated with increased intake, possibly through the effect of sugar on herbage palatability.
|
Page generated in 0.0404 seconds