• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New methods for 2-Deoxy-Beta-Oligosaccharide synthesis and progress towards the total synthesis of Lomaiviticinone

Pongdee, Rongson 30 September 2004 (has links)
The oligosaccharide domain of many secondary metabolites have been demonstrated to be pivotal for the biological efficacy of the parent glycoconjugate. In most cases, the alteration or removal of these carbohydrate residues results in the greatly diminished or completely abolished biological activity of the natural product. A common structural motif found in secondary metabolites possessing carbohydrate domains is the 2-deoxy-β-glycosidic linkage which are among the most difficult to establish in a stereocontrolled fashion. Chapter I provides background information describing the difficulties associated with the synthesis of 2-deoxy-β-glycosidic linkages in addition to a sampling of the current methodology available for their construction. Chapter II details our use of diethyl and pinacol phosphite glycosyl donors towards a direct synthesis of a designed 2-deoxy-β-oligosaccharide in a "one-pot" process which constitutes a novel approach towards the synthesis of these glycosidic linkages. Lomaiviticin A was isolated as the major metabolite from fermentation of the halophilic strain LL-37I366 which was later assigned the name Micromonospora lomaivitiensis. Lomaiviticin A displayed potent biological activity towards numerous cancer cell lines with IC50 values ranging from 0.01 to 98 ng/ml. While postulated to induce double-stranded DNA cleavage, the mechanism of action was unique when compared to known DNA-damaging agents such as adriamycin and mitomycin C. Chapter III details progress towards the synthesis of lomaiviticinone employing an "inside-out" strategy to take advantage of the molecule's own C2-symmetrical nature. The focus of the chapter will pertain to our efforts to construct the stereochemically-rich cyclohexenone central core highlighted by the use of organometallic C-C bond formation processes.
2

Progress Toward the Total Synthesis of the Lomaiviticins and a Biomimetic Unified Strategy for the Synthesis of 7-Membered Ring-Containing Lycopodium Alkaloids

Lee, Amy S 01 January 2016 (has links)
Lomaiviticin A (1) and B (2) are natural products with remarkably complex C2-symmetric structures and potent antiproliferative properties. Achieving total syntheses of 1 and 2 has been a long-standing project in the Shair group and part one of this thesis describes our first successful synthesis of the C4-epi-lomaiviticin A and B core structures. A key stereoselective oxidative enolate dimerization of an oxanorbornanone system was employed to establish the highly hindered C2-C2' bond. Crucial to our completion of the lomaiviticin core structures was the discovery of subtle yet far-reaching stereoelectronic effects imparted by the C4/C4'-stereocenters. The Lycopodium alkaloids are a family of complex polycyclic alkaloid natural products that have long served as popular targets for developing synthetic chemistry. More recently, select members have been reported to exhibit neurological effects. Part two of this thesis presents the development of a biomimetic, unified strategy for the synthesis of 7-membered ring-containing Lycopodium alkaloids and its successful application toward the first total syntheses of the proposed structure of (-)-himeradine A (38), (-)-lycopecurine (39), and (-)-dehydrolycopecurine (199), and the syntheses of (+)-lyconadin A (31) and (-)-lyconadin B (32). A biosynthetically inspired one-pot cascade reaction sequence was developed to construct the strained polycyclic core structure shared amongst these alkaloids. Additionally, the syntheses of 38, 39, and 199 featured a biomimetic intramolecular Mannich reaction to furnish the tetracyclic ring system. The successful application of our unifying strategy toward the synthesis of a diverse set of alkaloids lends support to our biosynthetic hypothesis that 7-membered ring-containing Lycopodium alkaloids arise from a common precursor. Our synthetic approach can potentially provide access to all such natural products. / Chemistry and Chemical Biology

Page generated in 0.032 seconds