• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propranolol Attenuates Late Sodium Current in a Long QT Syndrome Type 3-Human Induced Pluripotent Stem Cell Model / QT延長症候群3型ヒトiPS細胞モデルにおけるプロプラノロールの遅延ナトリウム電流抑制効果に関する検討

Hirose, Sayako 26 July 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23423号 / 医博第4768号 / 新制||医||1053(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邊 直樹, 教授 湊谷 謙司, 教授 山下 潤 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

The role of the perinexus in Long QT Syndrome Type 3

Wu, Xiaobo 13 February 2023 (has links)
Gain of function of cardiac voltage-gated sodium channel (Nav1.5) leads to Long QT Syndrome Type 3 (LQT3). LQT3 phenotype can be exacerbated by expanding the perinexus, which is an intercellular nanodomain with high density of Nav1.5 in the intercalated disc. Following this finding, we found that elevating extracellular sodium and widening the perinexus synergistically exacerbated LQT3 phenotype, Importantly, we also found that perinexal expansion increases the susceptibility to cardiac arrest in aged LQT3, which demonstrated that perinexal expansion is an arrhythmogenic risk especially in aged LQT3 patients. Furthermore, we observed that the perinexus narrows with aging and conceals LQT3 phenotype, which suggests that perinexal narrowing may have a cardio-protective role during aging in LQT3. Surprisingly, following the finding of the synergistic effect of extracellular sodium elevation and perinexal widening on LQT3 phenotype in drug-induced LQT3 guinea pig hearts, we found that this synergistic effect was not observed in genetically-modified LQT3 mouse hearts, which is due to high sodium also increasing transient outward potassium current (Ito). In summary, the whole project investigated the role of the perinexus in LQT3 from different conditions including sodium, aging and species. The findings in this project discovered the importance of perinexal expansion in LQT3 and also the involvement of Ito in sodium regulating LQT3 phenotype in hearts which functionally express Ito channels. Therefore, a LQT3 animal model which has similar electrophysiology close to human may be a great option for translational purpose. / Doctor of Philosophy / Long QT Syndrome Type 3 (LQT3) is an inherited heart disease with the phenotype of long QT interval in ECG. It has been found that LQT3 phenotype gets worse when a very tiny space in the heart, termed as the perinexus, is wide due to cardiac edema. Following this finding, we also found that increasing sodium concentration together with wide perinexus can further exacerbate LQT3 phenotype in guinea pig hearts. Furthermore, we found that widening the perinexus in aged LQT3 hearts causes cardiac death but not in adult, which suggests that perinexal widening worsens LQT3 phenotype and even leads to cardiac death in aged hearts. Besides, we found that the perinexus narrows with aging and there is no difference in LQT3 phenotype between adult and aged hearts, which suggests that the narrow perinexus during aging may protect the hearts from cardiac death in LQT3. Surprisingly, we discovered that increasing sodium and widening the perinexus together fails to exacerbate LQT3 phenotype when compared with widening the perinexus alone in LQT3 mouse hearts, which is due to high sodium increasing transient outward potassium current (Ito). Notably, Ito channels are not functionally expressed in guinea pig hearts. In summary, the whole project investigated the role of the perinexus in LQT3 from different conditions including sodium, aging and species. The findings in this project discovered the importance of perinexal expansion in LQT3 and also the involvement of Ito in sodium regulating LQT3 phenotype in hearts. Therefore, a LQT3 animal model which has similar electrophysiology close to human may be a great option for translational purpose.

Page generated in 0.1294 seconds